Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 2, pp 180–191 | Cite as

Homogeneous manifolds with intrinsic metric. II

  • V. N. Berestovskii
Article

Keywords

Homogeneous Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. I,” Sib. Mat. Zh.,29, No. 6, 17–29 (1988).Google Scholar
  2. 2.
    P. K. Rashevskii, “Any two points of a completely nonholonomic space of admissible lines can be joined” Uch. Zap. Mosk. Gos. Pedagog. Inst. K. Libknekhta, Ser. Fiz.-Mat.,3, No. 2, 83–94 (1938).Google Scholar
  3. 3.
    A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces [in Russian], Gostekhizdat, Moscow-Leningrad (1948).Google Scholar
  4. 4.
    J. Szenthe, “A metric characterization of homogeneous riemannian manifolds,” Acta Sci. Math.,33, No. 1/2, 137–151 (1972).Google Scholar
  5. 5.
    S. Helgason, Differential Geometry and Symmetric spaces [Russian translation], Mir, Moscow (1964).Google Scholar
  6. 6.
    B. O'Neill, “The fundamental equations of a submersion” Mich. Math. J.,13, 459–469 (1966).Google Scholar
  7. 7.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 1, Nauka, Moscow (1981).Google Scholar
  8. 8.
    H. Busemann and W. Myer, “On the foundations of the calculus of variations,” Trans. Am. Math. Soc.,49, 173–198 (1941).Google Scholar
  9. 9.
    H. Busemann, Geometry of Geodesics [Russian translation], Fizmatgiz, Moscow (1962).Google Scholar
  10. 10.
    E. Spanier, Algebraic Topology [Russian translation], Mir, Moscow (1971).Google Scholar
  11. 11.
    V. N. Berestovskii, “Busemann homogeneous G-spaces,” Sib. Mat. Zh.,23, No. 2, 3–15 (1982).Google Scholar
  12. 12.
    J. Szenthe, “On the topological characterization of transitive Lie group actions,” Acta Sci. Math.,36, No. 3/4, 323–344 (1974).Google Scholar
  13. 13.
    S. Kobayashi and K. Nomizu, Foundation of Differential Geometry [Russian translation], Vol. 2, Nauka, Moscow (1981).Google Scholar
  14. 14.
    C. Chevalley, Theory of Lie Groups [Russian translation], Vol. 1, IL, Moscow (1948).Google Scholar
  15. 15.
    A. Alexandrow, “Über eine Verallgemeinerung der Riemannische Geometrie,” Schrift. Inst. Math. Deutschen Akad. Wiss.,1, 33–84 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. N. Berestovskii

There are no affiliations available

Personalised recommendations