Neurochemical Research

, Volume 12, Issue 1, pp 83–91 | Cite as

Reconstitution of solubilized atrial cholinergic muscarinic receptors in liposomes

  • José S. Aguilar
  • Enrique L. M. Ochoa
  • Eduardo De Robertis
Original Articles


The reconstitution of solubilized bovine atrial cholinergic muscarinic receptor into liposomes made of exogenous lipids has been achieved by polyethyleneglycol precipitation. Of the different lipid mixtures used, soybean lecithins were shown to be the best on the basis of receptor recovery. The receptor reconsituted into soybean lecithins liposomes exhibited ligand binding properties very similar to those of the native receptor. The dissociation constant of [3H]-N-methyl-scopolamine ([3H]NMS) was 0.46 and 0.30 nM as determined by equilibrium and kinetics experiments respectively. The potency of a range of muscarinic ligands in displacing [3H]NMS binding was atropine > methyl-atropine > scopolamine > pirenzepine oxotremorine > gallamine > carbamylcholine > pilocarpine bethanechol. The Hill slopes of the displacement curves were near 1 for the antagonists and smaller than 1 for the agonists and for gallamine. The agonist binding may be modulated by guanine nucleotides. These results indicate that soybean lecithins fulfill the lipid requirements for the reconstitution of the atrial muscarinic receptor.

Key Words

Muscarinic receptor reconstitution liposomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar, J. S., and Ochoa, E. L. M. 1984. Recovery of agonist binding properties of solubilized atrial receptor. IV Biochemistry Pan-American Congress. Abstr. 366.Google Scholar
  2. 2.
    Aguilar, J. S., and Ochoa, E. L. M. 1986. The heterogeneity and nucleotide modulation of cholinergic muscarinic receptors are restored by poly(ethylene) glycol-6000 precipitation of solubilized atrial receptors. Neurochem. Int. 8:47–52.Google Scholar
  3. 3.
    Aronstam, R. S., Abood, L. G., and Hoss, W. 1978. Influence of sulfhydryl reagents and heavy metals on the functional sate of acetylcholine receptors in rat brain. Mol. Pharmacol. 14:575–586.PubMedGoogle Scholar
  4. 4.
    Aronstam, R. S., Schussler, D. C., and Eldefrawi, M. E. 1978. Solubilization of muscarinic acetylcholine receptors of bovine brain. Life Sci. 23:1377–1382.PubMedGoogle Scholar
  5. 5.
    Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. 1979. Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Commun. 87:1000–1005.PubMedGoogle Scholar
  6. 6.
    Berrie, C. P., Birdsall, N. J. M., Hulme, E. C., Keen, M., Stockton, J. M., and Wheatley, M. 1986. Muscarinic receptor subclasses: the binding properties of the soluble receptor binding sites. Trends Pharmacol. Sci. 7: Supplement pp 8–13.Google Scholar
  7. 7.
    Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. 1978. The binding of agonist to brain muscarinic receptors. Mol. Pharmacol. 14:737–750.PubMedGoogle Scholar
  8. 8.
    Birdsall, N. J. M., and Hulme, E. C. 1983. Muscarinic receptor subclasses. Trends Pharmacol. Sci. 4:459–563.Google Scholar
  9. 9.
    Brown, J. H., and Brown, S. R. 1984. Agonists differenciate muscarinic receptor that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J. Biol. Chem. 259:3777–3781.PubMedGoogle Scholar
  10. 10.
    Brown, J. H., and Masters, S. B. 1984. Muscarinic regulation of phosphatidyl inositiol turnover and cyclic nucleotide metabolism in the heart. Fed. Proc. 43:2613–2617.PubMedGoogle Scholar
  11. 11.
    Chang, Y. C., and Prusoff, M. H. 1973. Relationship between the inhibition constant (K i) and the concentration of the inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.PubMedGoogle Scholar
  12. 12.
    Cohen, N. M., Schmidt, D. M., McGlenner, R. C., and Klein, W. L. 1983. Receptor-mediated increases in phosphatidylinositol turnover in neuron-like cell lines. J. Neurochem. 40:547–554.PubMedGoogle Scholar
  13. 13.
    Cremo, C. R., Herron, S. G., and Schimerlik, M. I. 1981. Solubilization of atrial muscarinic receptor: A new detergent system and rapid analysis. Anal. Biochem. 115:331–338.PubMedGoogle Scholar
  14. 14.
    Dunlap, J., and Brown, J. H. 1983. Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium. Mol. Pharmacol. 24:15–22.PubMedGoogle Scholar
  15. 15.
    Ehlert, F. J., Roeske, W. R., and Yamamura, H. I. 1981. Muscarinic receptor. Regulation by guanine nucleotides, ions and N-ethylmaleimide. Fed. Proc. 40:153–159.PubMedGoogle Scholar
  16. 16.
    El-Fakahani, E., and Richelson, E. 1983. Effect of some calcium antagonists on muscarinic receptor-mediated cyclic GMP formation. J. Neurochem. 40:705–710.PubMedGoogle Scholar
  17. 17.
    Fisher, S. K., Klinger, P. D., and Agranoff, B. W. 1983. Muscarinic binding and phospholipid turnover in brain. J. Biol. Chem. 258:7358–7363.PubMedGoogle Scholar
  18. 18.
    Florio, V. A., and Sternweis, P. C. 1985. Reconstitution of resolved cholinergic muscarinic receptors with purified GTP-binding proteins. J. Biol. Chem. 260:3477–3483.PubMedGoogle Scholar
  19. 19.
    Fraser, C. M., Gregusky, R., Eddy, B., and Venter, J. C. 1983. Autoantibodies and monoclonal antibodies in the purification and molecular characterization of neurotransmitter receptors. J. Cell. Biochem. 21:219–231.PubMedGoogle Scholar
  20. 20.
    Haga, K., Haga, T., Ichiyama, A., Katada, T., Kurose, H., and Ui, M. 1985. Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature (London) 316:731–733.Google Scholar
  21. 21.
    Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. 1980. Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature (London) 283:90–92.Google Scholar
  22. 22.
    Hanley, M. R., and Iversen, L. L. 1978. Muscarinic cholinergic receptors in rat corpus striatum and regulation of guanine cyclic 3′,5′-monophosphate. Mol. Pharmacol. 14:246–255.PubMedGoogle Scholar
  23. 23.
    Hulme, E. C., Birdsall, N. J. M., Burgen, A. S. V., and Metha, P. 1978. The binding of antagonist to brain muscarinic receptor. Mol. Pharmacol. 14:737–750.PubMedGoogle Scholar
  24. 24.
    Jakobs, K. H., Aktories, K., and Schultz, K. 1983. Inhibitory coupling of hormone and neurotransmitter receptors to adenylate cyclase. J. Receptor Res. 3:137–142.Google Scholar
  25. 25.
    Kilian, P. L., Dunlap, C. R., Mueller, P., Schell, M. A., Huganir, R. L., and Racker, E. 1980. Reconstitution of acetylcholine fromTorpedo Californica with highly purified phospholipids: effect of α-tocopherol, phylloquinone, and other terpenoid quinones. Biochem. Biophys. Res. Commun. 183:409–414.Google Scholar
  26. 26.
    Kirilovsky, J., Steiner-Mordich, S., Sellinger, Z., and Scramm, M. 1985. Lipid requirements for reconstitution of the delipidated β-adrenergic receptor and the regulatory protein FEBS Lett. 183:75–80.PubMedGoogle Scholar
  27. 27.
    Korn, S. J., Martin, M. W., and Harden, T. K. 1983. N-ethylmaleimide-induced alteration of agonists with muscarinic cholinergic receptor of rat brain. J. Pharmacol. Exp. Ther. 224:118–126.PubMedGoogle Scholar
  28. 28.
    Lefkowitz, R. J., Cerione, R. A., Codina, J., Birnbaumer, L., and Caron, M. G. 1985. Reconstitution of the β-adrenergic receptor. J. Membrane Biol. 87:1–12.Google Scholar
  29. 29.
    Lee, A. G. 1983. Lipid phase transitions and mixtures. Pages 43– (Aloia, R. C., ed.), Membrane Fluidity in Biology. Vol. 2 General Principles. Academic Press. New York.Google Scholar
  30. 30.
    Lee, J.-H., and El-Fakahani, E. E. 1985. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates. J. Pharmacol. Exp. Ther. 223:707–714.Google Scholar
  31. 31.
    Letters, R. 1964. The application of a two dimensional paper chromatography technique to the analysis of phospholipids. Biochem. J. 93:313–316.PubMedGoogle Scholar
  32. 32.
    Levitzki, A. 1984. Receptor to effector coupling in the receptor-dependent adenylate cyclase system. J. Receptor Res. 4:399–409.Google Scholar
  33. 33.
    Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  34. 34.
    Manalan, A. S., Werth, D. K., Jones, L. R., and Watanabe, A. M. 1983. Enrichment, solubilization and partial characterization of digitonin-solubilized muscarinic receptors derived from canine ventricular myocardium. Cir. Res. 52:664–676.Google Scholar
  35. 35.
    McKinney, M., Stenstrom, S., and Richelson, E. 1985. Muscarinic responses and binding in a murine neuroblastoma clone (NiE-115)-mediation of separate responses by high affinity agonist-receptor conformations. Mol. Pharmacol. 27:223–235.PubMedGoogle Scholar
  36. 36.
    McNamee, M. G., and Ochoa, E. L. M. 1982. Reconstitution of acetylcholine receptor function in model membranes. Neuroscience 7:2305–2319.PubMedGoogle Scholar
  37. 37.
    Michell, R. H. 1975. Inositol phospholipids and cell surface receptors. Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  38. 38.
    Molinoff, P. B., Wolf, B. B., and Weiland, G. A. 1981. Quantitative analysis of drug-receptor interactions: II. Determination of the properties of receptor subtypes. Life Sci. 29:427–443.PubMedGoogle Scholar
  39. 39.
    Nathanson, N. H., Klein, W. L., and Nirenberg, M. 1978. Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors. Proc. Natl. Acad. Sci. U.S.A. 75:1788–1791.PubMedGoogle Scholar
  40. 40.
    North, R. A. 1986. Muscarinic receptors and membrane ion conductances. Trends Pharmacol. Sci. 8:supplement pp 19–22.Google Scholar
  41. 41.
    Ochoa, E. L. M., Dalziel, A. W., and McNamee, M. G. 1983. Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. Biochim. Biophys. Acta 727:151–162.PubMedGoogle Scholar
  42. 42.
    Olianas, M. C., Onali, P., Neff, N. H., and Costa, E. 1983. Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists. Mol. Pharmacol. 23:393–398.PubMedGoogle Scholar
  43. 43.
    Pellegrino de Iraldi, A., Aguilar, J. S., and Ochoa, E. L. M. 1986. Ultrastructure of reconstituted membranes containing the muscarinic receptor. Neurochem. Res. 11:983–996.PubMedGoogle Scholar
  44. 44.
    Peterson, G. L., Herron, G. S., Yamaki, M., Fullerton, D. S., and Schimerlik, M. I. 1984. Purification of the muscarinic acetylcholine receptor from porcine brain. Proc. Natl. Acad. Sci. U.S.A. 81:4993–4997.PubMedGoogle Scholar
  45. 45.
    Rodbell, M. 1980. The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature (London) 284:17–22.Google Scholar
  46. 46.
    Ross, D. H., Shreeve, S. M., and Hamilton, M. G. 1985. Activation of muscarinic receptors inhibit Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ transport in synaptic membranes. Brain Res. 329:39–47.PubMedGoogle Scholar
  47. 47.
    Sakman, B., and Noma, A. 1983. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of mammalian heart. Nature, 303:350–353.Google Scholar
  48. 48.
    Schimerlik, M. I., Miller, S., Peterson, G. L., Rosenbaum, L. C., and Tota, M. R. 1986. Biochemical studies on muscarinic receptors in porcine atrium. Trends Pharmacol. Sci. 7:supplement pp 2–7.Google Scholar
  49. 49.
    Shreeve, S. M., Roeske, W. R., and Venter, J. C. 1984. Partial functional reconstitution of the cardiac muscarinic receptor. J. Biol. Chem. 259:12398–12402.PubMedGoogle Scholar
  50. 50.
    Stockton, J. M., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. 1983. Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 23:551–557.PubMedGoogle Scholar
  51. 51.
    Venter, J. C. 1983. Muscarinic cholinergic receptor structure. J. Biol. Chem. 258:4842–4848.PubMedGoogle Scholar
  52. 52.
    Venter, J. C., Eddy, B., Hall, L. M., and Fraser, C. M. 1984. Monoclonal antibodies detect the conservation of muscarinic receptor structure fromDrosophila to human brain. Proc. Natl. Acad. Sci. U.S.A. 81:272–274.PubMedGoogle Scholar
  53. 53.
    Waelbroeck, M., Robberecht, P. Chatelain, P., and Christophe, J. 1982. Rat cardiac muscarinic receptors. Effects of guanine nucleotides on high- and low-affinity binding sites. Mol. Pharmacol. 21:581–588.PubMedGoogle Scholar
  54. 54.
    Warren, G. B., Toon, P., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. 1974. Complete control of the lipid environment of membrane bound proteins: application to a calcium transport system. FEBS Lett. 41:122–124.PubMedGoogle Scholar
  55. 55.
    Weber, E. J. 1981. Composition of commericial corn and soybean bean lecithins. JAOCS 58:898–891.Google Scholar
  56. 56.
    Wei, J.-W., Sulakhe, R. P. 1979. Agonist-antagonist interactions with rat cholinergic-muscarinic receptor sites differential regulation by guanine nucleotides. Eur. J. Pharmacol. 58:91–92.PubMedGoogle Scholar
  57. 57.
    Weiland, G. A., and Molinoff, P. B. 1981. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 29:313–330.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • José S. Aguilar
    • 1
  • Enrique L. M. Ochoa
    • 1
  • Eduardo De Robertis
    • 1
  1. 1.Facultad de Medicina, ParaguayInstituto de Biologia CelularBuenos AiresArgentina

Personalised recommendations