Lithuanian Mathematical Journal

, Volume 26, Issue 1, pp 93–99 | Cite as

Representation of solutions of a strongly degenerate elliptic system by a laplace integral

  • D. Jurgaitis


Elliptic System Degenerate Elliptic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. Poincaré, “Sur les integrales irregulieres des équations lineaires,” Acta Math.,8, 295–344 (1886).Google Scholar
  2. 2.
    J. Horn, “Verallgemeinerte Laplacesche Integrale als Lösungen linearer und nicht linearer Differentialgleichungen,” Jahresber. Deutsch. Math. Verein.,25, 301–325 (1917).Google Scholar
  3. 3.
    A. I. Yanushauskas, Analytic Theory of Elliptic Equations [in Russian], Nauka, Siberian Branch, Novosibirsk (1979).Google Scholar
  4. 4.
    A. V. Bitsadze, Foundations of the Theory of Analytic Functions of a Complex Variable [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    D. T. Yurgaitis, “Solutions of a strongly degenerate first order elliptic system,” Liet. Mat. Rinkinys,23, No. 2, 197–212 (1983).Google Scholar
  6. 6.
    I. M. Ryzhik and I. S. Gradshtein, Tables of Integrals, Series, and Produccts, Academic Press (1966).Google Scholar
  7. 7.
    M. Abramovich and I. Stigan (eds.), Handbook on Special Functions [in Russian], Nauka, Moscow (1979).Google Scholar
  8. 8.
    J. Horn, “Über eine Klasse linearer Differentialgleichungen,” Math. Ann.,50, 525–556 (1898).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • D. Jurgaitis

There are no affiliations available

Personalised recommendations