Skip to main content
Log in

Developmental changes in high-affinity uptake of GABA by cultured neurons

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

High-affinity uptake of [3H]γ-aminobutyric acid (GABA) was studied in cultures of neonatal rat cortical neurons grown on pre-formed monolayers of non-neuronal (glial) cells. Both the maximum rate (V max) and, to a smaller extent, theK m of [3H]GABA uptake increased with time. In addition, in parallel with these changes, 2,4-diaminobutyric acid and cis-3-aminocyclohexane-1-carboxylic acid (ACHC), compounds which are considered typical substrate/inhibitors of GABA uptake in neurons, became progressively stronger inhibitors of [3H]GABA uptake. Consequently, the present results may mean that the studies using uptake, of [3H]GABA, [3H]ACHC, or [3H]DABA as a specific marker for GABAergic neurons differentiating during the ontogenetic development of the central nervous system may have to be interpreted with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seiler, N., and Lajtha, A. 1987. Functions of GABA in the vertebrate organism. Pages 1–56in Redburn, D. A. and Schousboe, A. (eds.), Neurotrophic Activity of GABA during Development, Neurobiology, Vol. 32, Alan R. Liss, Inc, New York.

    Google Scholar 

  2. Iversen, L. L., and Johnston, G. A. R. 1971. GABA uptake in central nervous system: comparison of uptake in slices and homogenates and the effect of some inhibitors., J. Neurochem. 18:1939–1950.

    Google Scholar 

  3. Debler, E. A., and Lajtha, A. 1987. High affinity transport of γ-aminobutyric acid, glycine, taurine,l-aspartic acid andl-glutamic acid in synaptosomal (P2) tissue: A kinetic and substrate-specificity analysis. J. Neurochem. 48:1851–1856.

    Google Scholar 

  4. Johnston, G. A. R., and Balcar, V. J. 1988, GABA enzymes and transport systems,in Bowery, N. G. (ed.), GABA: From Basic Research to clinical Implications, Pythagora Press, Rome, in press,

    Google Scholar 

  5. Martin, D. L. 1976. Carrier-mediated transport and removal of GABA from synaptic regions. Pages 347–386,in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABA in Nervous System Function, Kroc Foundation Series, Vol. 5, Raven Press, New York.

    Google Scholar 

  6. Sellstrom, A., Venema, R., and Henn, F. 1976. Functional assessment of GABA uptake or exchange, by synaptosomal fractions. Nature 264:652–653.

    Google Scholar 

  7. Levi, G., and Raiteri, M. 1978. Modulation of γ-aminobutyric acid transport in nerve endings: Role of extracellular γ-aminobutyric acid and of cationic fluxes. Proc. Natl. Acad. Sci. 75:2981–2985.

    Google Scholar 

  8. Iversen, L. L., and Bloom, F. E. 1972. Studies, of the uptake of3H-GABA and3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41:131–143.

    Google Scholar 

  9. Chronwall, B. M., and Wolff, J. R. 1980. Prenatal and postnatal development of GABA-accumulating cells in the occipital cortex of rat. J. Comp. Neurol. 190:187–208.

    Google Scholar 

  10. Wong, P. T., and McGeer, E. G. 1981. Postnatal changes of GABAergic and glutamatergic parameters Dev. Brain Res. 1:519–530.

    Google Scholar 

  11. Ottersen, O. P., and Storm-Mathisen, J. 1984. Neurons containing or accumulating transmitter amino acids. Pages 141–216,in Bjorklund, A., Hokfelt, and Kuhar, M. J. (eds.), Handbook of Chemical Neuroanatomy, Vol. 3, Part II Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  12. Kelly, P., Luttges, M., Johnston, T., and Grove, W. 1974., Maturation-dependent alterations in3H-GABA compartmentalization in neural tissue in vitro. Brain Res 260:279–285.

    Google Scholar 

  13. Iversen, L. L., and Kelly, J. S. 1975. Uptake and metabolism of γ-aminobutyric acid by neuronal and glial cells. Biochem. Pharmacol. 24:933–938.

    Google Scholar 

  14. Neal, M. J., and Bowery N. G. 1977. Cis-3-aminocyclohexanel-carboxylic acid: a substrate for neuronal GABA transport system. Brain Res. 138:169–174.

    Google Scholar 

  15. Larsson, O. M., Jonston, G. A. R., and Schousboe, A., 1983. Differences in uptake kinetics of cis-3-aminocyclohexane, carboxylic acid into neurons and astrocytes in primary cultures. Brain Res. 260:279–285.

    Google Scholar 

  16. Larsson, O. M., Griffiths, R., Allen, I. C., Schousboe A. 1986. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine and beta-alanine high affinity transport into neurons and astrocytes: Evidence for similarity between the taurine and betaalanine carriers in both cell types. J. Neurochem. 47:426–432.

    Google Scholar 

  17. Balcar, V. J., Mark, J., Borg, J., and Mandel P., 1979. High affinity uptake of gamma-aminobutyric acid in cultured glial and neuronal cells. Neurochem. Res. 4:339–354.

    Google Scholar 

  18. Leach, M. J., Riddall, D. R., and Winkley, C. M. 1976. Uptake of L-2,4-diamino-[4-3H]butyric acid into slices of cerebral cortex. J. Neurochem. 27:1281–1282.

    Google Scholar 

  19. Hauser, K. L., Balcar, V. J., and Bernasconi, R. 1980. Development of GABA neurons in dissociated cell culture of rat cerebral cortex. Pages 37–41,in Lal H., Fielding, S., Malick, J., Robert, E., Shah, N. and Usdin, E. (eds.), GABA Neurotransmission. Current Developments in Physiology and Neurochemistry, Brain Res. Bull. 5 (Suppl.), Ankho International Inc., Fayetteville.

    Google Scholar 

  20. Mains, R. E., and Patterson, D. H. 1973. Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J. Cell. Biol. 59:329–345.

    Google Scholar 

  21. Godfrey, E. W., Nelson, P. G., Schrier, B. K., Breuer, B. C., and Ransom, B. R. 1975. Neurons from foetal rat brain in a new culture system: A multidisciplinary analysis. Brain Res. 90:1–21.

    Google Scholar 

  22. Balcar, V. J., Borg, J. and Mandel, P. 1977. High affinity uptake ofl-glutamate andl-aspartate by glial cells. J. Neurochem. 28:87–93.

    Google Scholar 

  23. Iversen, L. L., and Neal, M. J. 1968. The uptake of3H-GABA by slices of rat cerebral cortex. J. Neurochem. 15:1141–1149.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  25. Schousboe, A., Fosmark, H., and Svenneby, G. 1976. Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Res. 116:158–164.

    Google Scholar 

  26. Cleland, W. W. 1967. The statistical analysis of enzyme kinetic data. Adv. Enzymology 29:1–32.

    Google Scholar 

  27. Cleland, W. W. 1963. The kinetics of enzyme catalyzed reactions with two or more substrates or products. II. Inhibition: Nomenclature and Theory. Biochim. Biophys. Acta. 67:171–172.

    Google Scholar 

  28. Wolff, J. R., Balcar, V. J., Zetzsche, T., Bottcher, H., Schmechel, D. E., and Chronwall, B. M. 1984. Development of GABAergic system in rat visual cortex. Pages 215–239,in Lauder, J. M., and Nelson, P. G. (eds.), Gene Expression and Cell-Cell Interactions in the Developing Nervous System, Plenum Publishing Corporation, New York.

    Google Scholar 

  29. Balcar, V. J., and Johnston, G. A. R. 1987. Ontogeny of GABAergic systems in the brain. Pages 57–77,in Redburn, D. A., and Schousboe, A. (eds.), Neurotrophic Activity of GABA during Development, Neurology and Neurobiology Vol. 32. Alan R. Liss, Inc., New York.

    Google Scholar 

  30. Dichter, M. A. 1978. Rat cortical neurons in cell culture—culture methods, cell morphology, electrophysiology and synapse formation. Brain Res. 149:279–293.

    Google Scholar 

  31. White, W. F., Snodgrass, S. R., and Dichter, M. A. 1980. Identification of GABA neurons in rat cortical cultures by GABA uptake autoradiography. Brain Res. 190:139–152.

    Google Scholar 

  32. Lasher, R. S. 1975. Uptake of GABA by neuronal and non-neuronal cells in dispersed cell cultures of postnatal rat cerebellum. J. Neurobiol. 6:597–608.

    Google Scholar 

  33. Aloisi, F., Ciotti, M. T., and Levi, G. 1985. Characterization of GABAergic neurons in primary cultures and selective neurotoxic effects of a serum fraction. J. Neurosci. 5:2001–2008.

    Google Scholar 

  34. Larsson, O. M., Hertz, L., and Schousboe, A. 1986. Uptake of GABA and nipecotic acid in astrocytes and neurons in primary cultures: Changes in the sodium coupling ratio during differentiation. J. Neurosci. Res. 16:699–708.

    Google Scholar 

  35. Drejer, J., Honore, T., and Schousboe, A. 1987. Excitatory amino acid-induced release of [3H]GABA from cultured mouse cerebral interneurons. J. Neurosci. 7:2910–2916.

    Google Scholar 

  36. Yu, A. C. H., Hertz, L., and Hertz, E. 1984. Alteration in uptake and release rates for GABA, glutamate and glutamine during biochemical maturation of highly purified culture of cerebellar cortical neurons, a GABAergic preparation. J. Neurochem. 42:951–960.

    Google Scholar 

  37. Borg, J., Ramaharobandro, N., Mark, J., and Mandel, P. 1980. Changes in the uptake of GABA and taurine during neuronal and glial maturation. J. Neurochem. 34:1113–1122.

    Google Scholar 

  38. Vanker, A. D. 1979. Effects of temperature and sodium on14C-GABA transport into adult and neonatal rat brain crude synaptosomal fractions. Dev. Neurosci. 2:86–93.

    Google Scholar 

  39. Johnston, G. A. R., and Davies, L. P. 1975. Postnatal changes in the high affinity uptake of glycine and GABA in rat central nervous system. J. Neurochem. 22:101–105.

    Google Scholar 

  40. Coyle, J. T., and Enna, S. J. 1976. Neurochemical aspects of the ontogenesis of GABAergic neurons in the rat brain. Brain Res. 111:119–133.

    Google Scholar 

  41. Redburn, R. A., Broome, D., Ferkany, J., and Enna, S. J. 1978. Development of rat brain uptake and calcium-dependent release of GABA. Brain Res. 152:511–519.

    Google Scholar 

  42. Wood, J. D., and Sidhu, M. S. 1986. Uptake of γ-aminobutyric acid by brain tissue preparations. A re-evaluation. J. Neurochem. 46:739–744.

    Google Scholar 

  43. Reynolds, R., Steffen, C., and Herschkowitz, N. 1987. High affinity uptake of γ-[3H]aminobutyric acid by isolated mouse oligodendrocytes in culture. Neurochem. Res. 12:885–890.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcar, V.J., Hauser, K.L. & Demieville, H. Developmental changes in high-affinity uptake of GABA by cultured neurons. Neurochem Res 14, 229–233 (1989). https://doi.org/10.1007/BF00971315

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971315

Key Words

Navigation