Siberian Mathematical Journal

, Volume 23, Issue 5, pp 681–690 | Cite as

Equivalence of the Haar and Franklin systems in certain function spaces

  • A. A. Komissarov
Article
  • 10 Downloads

Keywords

Function Space Franklin System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Kaczmarz and H. Steinhaus, Orthogonal Series, Chelsea Publishing.Google Scholar
  2. 2.
    Z. Ciesielski, “Properties of the orthonormal Franklin system,” Stud. Math.,23, No. 2, 141–157 (1963).Google Scholar
  3. 3.
    Z. Ciesielski, P. Simon, and P. Sjölin, “Equivalence of Haar and Franklin bases in Lp spaces,” Stud. Math.,60, No. 2, 195–211 (1976).Google Scholar
  4. 4.
    P. Sjölin, “The Haar and Franklin systems are not equivalent bases in Ll,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,25, No. 11, 1099–1100 (1977).Google Scholar
  5. 5.
    R. Ryan, “Conjugate functions in Orlicz spaces,” Pac. J. Math.,13, No. 4, 1371–1377 (1963).Google Scholar
  6. 6.
    Z. Ciesielski, “Properties of the orthonormal Franklin system. II,” Stud. Math.,27, No. 3, 289–323 (1966).Google Scholar
  7. 7.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylock (1961).Google Scholar
  8. 8.
    M. A. Krasnosel'skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  9. 9.
    A. Zygmund, Trigonometrical Series, Cambridge Univ. Press (1968).Google Scholar
  10. 10.
    S. Lozinski, “On convergence and summability of Fourier series and interpolation processes,” Mat. Sb.,14, No. 3, 175–268 (1944).Google Scholar
  11. 11.
    Z. Ciesielski and S. Kwapien, “Some properties of the Haar, Walsh-Paley, Franklin and the bounded polygonal orthonormal basis in Lp spaces,” Comment. Mathematicae, Tomus Specialis in Honorem Ladisllai Orlicz, Part 2, 37–42, Warsaw (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. A. Komissarov

There are no affiliations available

Personalised recommendations