Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 5, pp 704–712 | Cite as

Normal and compact solvability of linear operators

  • V. M. Gol'dshtein
  • V. I. Kuz'minov
  • I. A. Shvedov
Article

Keywords

Linear Operator Compact Solvability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “On the normal and compact solvability of the operator of exterior differentiation under homogeneous boundary conditions,” Sib. Mat. Zh.,28, No. 4, 82–96 (1987).Google Scholar
  2. 2.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “Dual spaces of spaces of differential forms,” Sib. Mat. Zh.,27, No. 1, 45–56 (1986).Google Scholar
  3. 3.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “Integral representation of the integral of a differential form,” in: Functional Analysis and Mathematical Physics [in Russian], Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk (1985).Google Scholar
  4. 4.
    N. N. Tarkhanov, “A formula and estimates for the solutions of the equation du=f in a domain and on the boundary of a domain,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 58–66, (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. M. Gol'dshtein
  • V. I. Kuz'minov
  • I. A. Shvedov

There are no affiliations available

Personalised recommendations