Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 5, pp 678–684 | Cite as

Sabitov's conjecture that volume is stationary under infinitesimal bending of a surface

  • V. A. Aleksandrov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Connelly, “Assumptions and unsolved questions in the theory of bendings”, in: Studies in the Metric Theory of Surfaces [Russian translation], Mir, Moscow (1980), pp. 228–238.Google Scholar
  2. 2.
    E. Rembs, “Zur Verbiegung von Flächen im Grossen”, Math. Z.,56, No. 3, 271–279 (1952).Google Scholar
  3. 3.
    Yu. G. Reshetnyak, “Nonrigid surfaces of rotation”, Sib. Mat. Zh.,3, No. 4, 591–604 (1962).Google Scholar
  4. 4.
    A. D. Milka, “Points of relative nonrigidity of a convex surface of rotation”, Ukr. Geom. Sborn., Kharkov,1, 65–74 (1965).Google Scholar
  5. 5.
    D. A. Trotsenko, “Nonrigid analytic surfaces of rotation”, Sib. Mat. Zh.,21, No. 5, 100–108 (1980).Google Scholar
  6. 6.
    S. Saks, Theory of the Integral [Russian translation], IL, Moscow (1949).Google Scholar
  7. 7.
    R. Connelly, “A counterexample to the rigidity conjecture for polyhedra”, Publ. Math. IHES, No. 47, 333–338 (1977).Google Scholar
  8. 8.
    N. Kuijper, “Bendable polyhedral spheres in E3 a la Robert Connelly”, in: Studies in the Metric Theory of Surfaces [Russian translation], Mir, Moscow (1980), pp. 210–227.Google Scholar
  9. 9.
    A. D. Aleksandrov and S. M. Vladimirova, “Bending of polyhedra with rigid faces”, Vestn. Leningr. Gos. Univ., Mat. Mekh. Astron.,3, No. 13, 138–141 (1962).Google Scholar
  10. 10.
    S. E. Cohn-Vossen, “Nonrigid closed surfaces”, in: Questions of Differential Geometry in the Large [in Russian], Fizmatgiz, Moscow (1959), pp. 87–114.Google Scholar
  11. 11.
    A. N. Zubkov, “Example of a nonrigid closed surface of rotation having stationary volume”, Taganrog. Gos. Ped. Inst., Taganrog (1984), Dep. in VINITI, May 31, 1984, No. 3834.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. A. Aleksandrov

There are no affiliations available

Personalised recommendations