Siberian Mathematical Journal

, Volume 32, Issue 6, pp 989–993 | Cite as

Temporal logics with “the next” operator do not have interpolation or the Beth property

  • L. L. Maksimova
Article

Keywords

Temporal Logic Beth Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    W. E. Beth, “On Padoa's method in the theory of definitions,” Indag. Math.,15, No. 4, 330–339 (1953).Google Scholar
  2. 2.
    W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory,” J. Symbol. Logic,22, 269–285 (1957).Google Scholar
  3. 3.
    M. K. Valiev, “On temporal dependences in databases,” Izv. Akad. Nauk SSSR, Ser. Tekhn. Kibern.,1, 106–115 (1985).Google Scholar
  4. 4.
    E. Chouraki, “Formal expression of time in a knowledge base,” in: Non-standard Logics for Automated Reasoning, Academic Press, London (1988), pp. 81–98.Google Scholar
  5. 5.
    F. Kroeger, “Temporal logics of programs,” in: EATS Monograph on Theoretical Computer Science, Springer, Berlin (1987).Google Scholar
  6. 6.
    Z. Manna and A. Pnuelli, “Verification of concurrent programs: a temporal proof system,” in: Foundations of Computer Science IV (Math. Centre Tracts), Amsterdam (1983), pp. 163–255.Google Scholar
  7. 7.
    I. Nemeti, “Nonstandard dynamic logic,” in: D. Kozen (ed.), Logic of Programs: Proc. Conf. New York, 1981, Lecture Notes in Computer Science,131, Springer, Berlin (1982), pp. 311–348.Google Scholar
  8. 8.
    K. Segerberg, “Von Wright's temporal logic,” in: Deduction [Russian translation], Nauka, Moscow (1979), pp. 173–205.Google Scholar
  9. 9.
    H. Kawai, “Eine Logik erster Stufe mit einem infinitaren Zeitoperator,” Z. Math. Log. Grundl. Math.,28, 173–180 (1982).Google Scholar
  10. 10.
    H. Kawai, “Sequential calculus for a first order infinitary temporal logic,” Z. Math. Log. Grundl. Math.,33, 423–432 (1987).Google Scholar
  11. 11.
    Z. Manna and P. Wolper, “Synthesis of communicating processes from temporal logic specifications,” in: D. Kozen (ed.), Logic of Programs: Proc. Conf. New York, 1981, Lecture Notes in Computer Science,131, Springer, Berlin (1982), pp. 253–281.Google Scholar
  12. 12.
    H. W. Kamp, Tense Logic and the Theory of Linear Order, Ph. D. Thesis, University of California, Los Angeles (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • L. L. Maksimova

There are no affiliations available

Personalised recommendations