Siberian Mathematical Journal

, Volume 33, Issue 4, pp 641–653 | Cite as

Simply connected compact standard homogeneous Einstein manifolds

  • E. D. Rodionov


Einstein Manifold Homogeneous Einstein Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Besse, Einstein Manifolds, Springer, Berlin (1987).Google Scholar
  2. 2.
    A. Sagle, “A note on triple systems and totally geodesic submanifolds in a homogeneous space,” Nagoya Math. J.,32, 5–20 (1968).Google Scholar
  3. 3.
    Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II [Russian translation], Nauka, Moscow (1981).Google Scholar
  4. 4.
    W. McKenzie Jr. and W. Ziller, “On normal homogeneous Einstein manifolds,” Ann. sci. Ecole Norm. Sup.,18, ser. 4, 563–633 (1985).Google Scholar
  5. 5.
    A. Sagle, “On anticommutative algebras and homogeneous spaces,” J. Math. and Mech., 16, No. 12, 1381–1393 (1967).Google Scholar
  6. 6.
    A. Fleischer, “On algebras of invariant pseudo-Riemannian connections on homogeneous spaces,” Uchonye Zapiski Tartusskogo Universiteta, 803, 132–142 (1988).Google Scholar
  7. 7.
    B. Kostant, “On differential geometry and homogeneous spaces,” Proc. Nat. Acad. Sci. USA, 42, 258–261, 354–357 (1956).Google Scholar
  8. 8.
    J. A. Wolf, “The geometry and the structure of isotropy irreducible homogeneous spaces,” Acta Math., 120, 59–148 (1968).Google Scholar
  9. 9.
    O. V. Manturov, “Homogeneous Riemannian spaces with an irreducible group of motions,” Trudy Seminara po Vektornomu i Tenzornomu Analizu, Moscow University Publishers, 13, 68–145 (1966).Google Scholar
  10. 10.
    E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sbornik, 30, No. 2, 349–462 (1952).Google Scholar
  11. 11.
    A. Fleischer, “Reductive structures and triple Lie systems,” Izvestiya AN Eston. SSR, series: Phys.-Math., 29, No. 3, 254–260 (1980).Google Scholar
  12. 12.
    H. C. Wang, “Homogeneous spaces with non-vanishing Euler characteristics,” Ann. Math., 50, 925–953 (1949).Google Scholar
  13. 13.
    B. Kostant, “On holomony and homogeneous spaces,” Nagoya Math. J., 12, 31–54 (1957).Google Scholar
  14. 14.
    J. Wolf, Spaces of Constant Curvature [Russian translation], Nauka, Moscow, (1982).Google Scholar
  15. 15.
    L. V. Sabinin, “Methods of nonassociative algebra in differential geometry,” In: Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1 [Russian translation], Nauka, Moscow, (1981).Google Scholar
  16. 16.
    A. Sagle, “On homogeneous spaces, holonomy and nonassociative algebras,” Nagoya Math. J., 32, 373–394 (1968).Google Scholar
  17. 17.
    S. Helgason, Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).Google Scholar
  18. 18.
    D. V. Alekseevskiî, A. M. Vinogradov, and V. V. Lychagin, “Modern Ideas and Concepts of Differential Geometry”, Itogi nauki i tekhniki, Sovremennye Problemy Matematiki. Fundamental'nye napravleniya, 28 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • E. D. Rodionov

There are no affiliations available

Personalised recommendations