Siberian Mathematical Journal

, Volume 33, Issue 2, pp 219–233 | Cite as

Approximation of exact and closed differential forms by finite ones

  • V. M. Gol'dshtein
  • V. I. Kuz'minov
  • I. A. Shvedov
Article
  • 27 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. L. Sobolev, “Density of finite functions in the space Lp(m)(En),” Sib. Mat. Zh.,4, No. 3, 673–682 (1963).MATHMathSciNetGoogle Scholar
  2. 2.
    J. G. Heywood, “On uniqueness questions in the theory of viscous flow,” Acta Math.,136, No. 1, 61–102 (1976).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    O. V. Besov, “Extension of functions from Lp and Wp ,” Trudy Steklov Math. Institute, Akad. Nauk SSSR,89, Part 2, 5–17 (1967).MATHMathSciNetGoogle Scholar
  4. 4.
    V. N. Maslennikova and M. E. Bogovskii, “On the density of finite solenoidal vector fields,” Sib. Mat. Zh.,19, No. 5, 1092–1108 (1978).MATHMathSciNetGoogle Scholar
  5. 5.
    V. N. Maslennikova and M. E. Bogovskii, “Sobolev spaces of solenoidal vector fields,” Sib. Mat. Zh.,22, No. 3, 91–118 (1981).MATHMathSciNetGoogle Scholar
  6. 6.
    V. N. Maslennikova and M. E. Bogovskii, “Approximation of potential and solenoidal vector fields,” Sib. Mat. Zh.,24, No. 5, 149–171 (1983).MathSciNetGoogle Scholar
  7. 7.
    V. N. Maslennikova and M. E. Bogovskii, “Approximation of solenoidal and potential vector fields in Sobolev spaces and problems of mathematical physics,’ in: Partial Differential Equations [in Russian], Nauka, Novosibirsk (1986), pp. 129–137.Google Scholar
  8. 8.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “Spaces dual to the spaces of differential forms,” Sib. Mat. Zh.,27, No. 1, 45–56 (1986).CrossRefMathSciNetGoogle Scholar
  9. 9.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “On a property of the de-Rahm regularization operators,” Sib. Mat. Zh.,25, No. 2, 104–111 (1984).CrossRefMathSciNetGoogle Scholar
  10. 10.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “Differential forms on Lipschitz manifolds,” Sib. Mat. Zh.,23, No. 2, 16–30 (1982).CrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York (1984).MATHGoogle Scholar
  12. 12.
    R. Sulanke and P. Wingen, Differentialgeometrie und Faserbundel, Birkhauser Verlag, Basel (1972).Google Scholar
  13. 13.
    E. Michael, “Continuous, elections. II,” Ann. Math., Ser. 2,64, No. 3, 562–580 (1956).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “Lp-cohomologies of Riemannian manifolds,” in: Trudy Institut Matematiki, Siberian Branch, Acad. Sci. of the USSR,7, Issled. Geom. Matemat. Anal., Nauka, Novosibirsk (1987), pp. 101–116.Google Scholar
  15. 15.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “Reduced Lp-cohomologies of distorted cylinders,” Sib. Mat. Zh.,31, No. 5, 10–23 (1990).MathSciNetGoogle Scholar
  16. 16.
    V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, “On the Künneth formula for Lp-cohomologies of distorted products,” Sib. Mat. Zh.,32, No. 5, 29–42 (1991).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. M. Gol'dshtein
  • V. I. Kuz'minov
  • I. A. Shvedov

There are no affiliations available

Personalised recommendations