Neurochemical Research

, Volume 12, Issue 7, pp 613–618 | Cite as

Ethylcholine mustard aziridinium ion lesions of the rat cortex result in retrograde degeneration of basal forebrain cholinergic neurons: Implications for animal models of neurodegenerative disease

  • P. H. Stephens
  • Philip Tagari
  • A. C. Cuello
Original Articles

Abstract

Multiple injections of 2 nmols of cyclised ethylcholine mustard aziridinium ion (ECMA), a putative cholinergic neurotoxin, were made (unilaterally) into the cortical terminal field of cholinergic neurons projecting from the nucleus basalis of Meynert (NBM) in the rat basal forebrain. After 30 days, choline acetyltransferase enzymatic activity, a marker for cholinergic function, was significantly lowered in both ipsilateral cortex and NBM, and cholinergic cell bodies in the latter reduced in cross-sectional area, a spectrum of effects characteristic of retrograde degeneration of this pathway. These results are discussed in the context of neurodegenerative diseases affecting cholinergic function.

Key Words

Cholinergic neurons neurotoxins retrograde degeneration nucleus basalis Alzheimer's disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnston, M. V., McKinney, M., and Coyle, J. T. 1981. Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat. Brain Res. 43:159–172.Google Scholar
  2. 2.
    Fibiger, H. C. 1982. The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev. 4:327–388.Google Scholar
  3. 3.
    Cuello, A. C., and Sofroniew, M. V. 1984. The anatomy of the CNS cholinergic neurons. TINS 7:74–78.Google Scholar
  4. 4.
    Sofroniew, M. V., Pearson, R. C. A., Eckenstein, F., Cuello, A. C., and Powell, T. P. S. 1983. Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Research 289:370–374.Google Scholar
  5. 5.
    Stephens, P. H., Cuello, A. C., Sofroniew, M. V., Pearson, R. D. A., and Tagari, P. 1985. The effect of unilateral decortication upon choline acetyltransferase and glutamate decarboxylase activities in the nucleus basalis and other areas of the rat brain. J. Neurochem. 45:1021–1026.Google Scholar
  6. 6.
    Cuello, A. C., Stephens, P. H., Tagari, P. C., Sofroniew, M. V., and Pearson, R. C. A. 1986. Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res. 376:373–376.Google Scholar
  7. 7.
    Pearson, R. C. A., Sofroniew, M. V., Cuello, A. C., Forsil, T. P. S., Eckenstein, F., Esiri, M. M., and Wilcock, G. K. 1983. Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer's type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res. 289:375–379.Google Scholar
  8. 8.
    Sims, N. R., Bowen, D. M., Allan, S. J., Smith, C. C. T., Neary, D., Thomay, D. J., and Davison, A. N. 1983. Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem. 401:503–509.Google Scholar
  9. 9.
    Perry, E. R., and Perry, R. H. 1982. The cholinergic system in Alzheimer's disease. TINS 5:261–262.Google Scholar
  10. 10.
    Morrison, J. H., Rogers, J., Scherr, S., Benoit, R., and Bloom, F. E. 1985. Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients. Nature 314:90–91.Google Scholar
  11. 11.
    Roberts, G. W., Crow, T. J., and Polak, J. M. 1985. Nature 314:92–94.Google Scholar
  12. 12.
    Suszkiw, J. B., Beach, R. L., and Pilar, G. R. 1976. Choline uptake by cholinergic neuron cell somas. J. Neurochem. 26:1123–1131.Google Scholar
  13. 13.
    Fisher, A., and Hanin, I. 1980. Minireview: Choline analogs as potential tools in developing selective animal models of central cholinergic hypofunction. Life Sci. 27:1615–1634.Google Scholar
  14. 14.
    Sandberg, K., Schnaar, R. L., McKinney, M., Hanin, I., Fisher A., and Coyle, J. T. 1985. AF64A: an active site directed irreversible inhibitor of choline acetyltransferase. J. Neurochem. 44:439–445.Google Scholar
  15. 15.
    Mantione, C. R., Zigmond, M. J., Fisher, A., and Hanin, I. 1983. Selective presynaptic cholinergic neurotoxicity following intrahippocampal AF64A injection in rats. J. Neurochem. 41:251–255.Google Scholar
  16. 16.
    Sandberg, K., Hanin, I., Fisher, A., and Coyle, J. T. 1984. Selective cholinergic toxin AF64A's effects in rat striatum. Brain Res. 293:49–55.Google Scholar
  17. 17.
    Pellegrino, L. J., Pellegrino, A. S., and Cushman, A. J. 1967. A stereotaxic atlas of the rat brain. Plenum Press, New York.Google Scholar
  18. 18.
    Cuello, A. C., and Carson, S. 1983. Microdissection of fresh rat brain tissues slices. Pages 37–125,in Cuello, A. C., (ed.), Brain microdissection techniques. (Method in Neuroscience Series), John Wiley and Sons Ltd.Google Scholar
  19. 19.
    Butcher, L. L. 1978. Recent advances in histochemical techniques for the study of central cholinergic mechanisms. Pages 93–124,in Jensen, D. J. (ed), Cholinergic mechanisms and psychopharmacology, Plenum Press, New York.Google Scholar
  20. 20.
    Fonnum, F. A. 1975. A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24:407–409.Google Scholar
  21. 21.
    Atterwill, C. K., Batts, C., and Bloomfield, M. R. 1981. Effect of single and repeated convulsions of glutamate decarboxylase (GAD) activity and [3H]muscimol binding in the rat brain. J. Pharm. Pharmacol. 33:329–331.Google Scholar
  22. 22.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of dye binding. Anal. Biochem. 72:248–254.Google Scholar
  23. 23.
    Eckenstein, F., and Thoenen, H. 1982. Production of specific antisera and monoclonal antibodies in choline acetyltransferase. Characterization and use for identification of cholinergic neurons. EMBO J. 1:363–368.Google Scholar
  24. 24.
    Sternberger, L. A., Hardy, P. M., Cuculis, J. J., and Meyer, H. G. 1970. The unlabelled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (HRP-anti HAP) and its use in identification of spirochetes. J. Histochem. Cytochem. 18:315–333.Google Scholar
  25. 25.
    Cuello, A. C., Milstein, C., Wright, B., Bramwell, B., Priestley, J. V., and Jarvis, J. 1984. Development and application of a monoclonal rat peroxidase anti-peroxidases (PAP) immunocytochemical reagent. Histochemistry 30:257–261.Google Scholar
  26. 26.
    Abercrombie, M. 1946. Estimation of nuclear populations from microtome sections. Anat. Rec. 94:235–247.Google Scholar
  27. 27.
    Rylett, B. J., and Colhoun, E. H. 1980. Kinetic data on the inhibition of high affinity choliner transport into rat forebrain synaptosomes by choline-like compounds and nitrogen mustard analogues. J. Neurochem. 34:713–719.Google Scholar
  28. 28.
    Barlow, R., and Marchbanks, P. M. 1984. Effect of ethylcholine mustard on choline dehydrogenase and other enzymes of choline metabolism. J. Neurochem. 43:1568–1572.Google Scholar
  29. 29.
    Fisher, A., Mantione, C. R., Abraham, D. J., and Hanin, I. 1982. Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF 64A): in vivo. J. Pharmacol. and Exp. Therap. 222:140–145.Google Scholar
  30. 30.
    Levy, A., Kant, G. J., Meyerhoff, J. L., and Jarrard, L. E. 1984. Non-cholinergic neurotoxic effects of AF64A in the substantia nigra. Brain Res 305:169–172.Google Scholar
  31. 31.
    Potter, P. E., Hortnagl, H., and Hanin, I. 1986. Effect of AF64A-induced cholinergic deficit on brain serotonergic and catecholaminergic systems: Further studies on a potential animal model of Alzheimer's disease,in Hawthorne, J. N., and Dowdall, M. J. (ed.), Cellular and Molecular Basis of Cholinergic Function. Ellis Horwood, Chichester, U. K. (in press).Google Scholar
  32. 32.
    Sofroniew, M. V., and Pearson, R. C. A. 1985. Degeneration of cholinergic neurons in the basal nucleus following kainic or N-methyl-D-aspartic acid application to the cerebral cortex in the rat. Brain Res. 339:186–190.Google Scholar
  33. 33.
    Ingham, C. A., Bolam, J. P., Wainer, B. H., and Smith, A. D. 1986. A correlated light and electron microscopic study of identified cholinergic basal forebrain neurones that project to the cortex in the rat. J. Comp. Neurol. 239:176–192.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • P. H. Stephens
    • 1
  • Philip Tagari
    • 2
  • A. C. Cuello
    • 2
  1. 1.Department of PharmacologyOxford UniversityOxfordUK
  2. 2.Department of Pharmacology and TherapeuticsMcGill UniversityMontreal

Personalised recommendations