Neurochemical Research

, Volume 12, Issue 7, pp 607–612 | Cite as

Na+−K+-ATPase activity of glial, neuronal, and synaptosomal enriched fractions from normal and freezing-injured rabbit cerebral cortex

  • N. Avéret
  • E. Arrigoni
  • H. Loiseau
  • F. Cohadon
Original Articles

Abstract

This paper investigates the kinetic parameters of Na+−K+-ATPase in glial, neuronal, and synaptosomal enriched fractions isolated from rabbit cerebral cortex. Under normal conditions, kinetic parameters-Vmax and K 0.5 K+ -of Na+−K+-ATPase are the same in the three fractions, suggesting that this enzyme behaves as the same molecular entity. Following a cryogenic lesion, the alterations of these parameters appear to be different in the different fractions. These data suggest that the same enzyme exhibits various responses when exposed to the same pathological event. The dissimilar lipid composition of the Na+−K+-ATPase environment, and/or different adaptative responses to abnormal ion concentrations in glial, neuronal, and synaptosomal fractions could account for these different responses.

Key Words

Na+−K+-ATPase freezing lesion brain edema 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazan, N. G., Politi, E., and Rodriguez de Turco, E. B. 1984. Endogenous pools of arachidonic acid-enriched lipids in cryogenic brain edema. Pages 203–212,in Go, K. G., and Baethmann, A. (eds.), Recent Progress in the Study and Therapy of Brain Edema, Plenum Press, New York.Google Scholar
  2. 2.
    Bergmeyer, H. U., Bernt, E., and Hess, B. 1963. Lactate dehydrogenase. Page 736,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Academic Press, New York.Google Scholar
  3. 3.
    Booth, R. F., and Clark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.Google Scholar
  4. 4.
    Chan, P. H., and Fishman, R. A. 1984. Phospholipid degradation and the early release of polyunsaturated fatty acids in the evolution of brain edema. Pages 193–202,in Go, K. G., and Baethmann, A. (eds.), Recent Progress in the Study and Therapy of Brain Edema, Plenum Press, New York.Google Scholar
  5. 5.
    Chan, P. H., Quan, S. C., and Fishman, R. A. 1980, Inhibition of rat brain (Na+−K+)-ATPase by polynsaturated fatty acids. Trans. Amer. Soc. Neurochem., 11:120.Google Scholar
  6. 6.
    Chan, P. H., Yurko, M., and Fishman, R. A. 1982. Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38:525–531.Google Scholar
  7. 7.
    Clasen, R. A., Brown, D. V. L., Leavitt, S., and Hass, G. M. 1953. The production by liquid nitrogen of acute closed cerebral lesions. Surg. Gynecol. Obstet. 96:605–616.Google Scholar
  8. 8.
    Demopoulos, H. B., Milvy, P., Kakari, S., and Ransohoff, J. 1972. Molecular aspects of membrane structure in cerebral edema. Pages 29–39,in Reulen, H. L., and Schurmann, K. (eds.), Steroids and Brain Edema, Springer Verlag, New York.Google Scholar
  9. 9.
    Ellman, G. L., Courtney, K. D., Andres, V. Jr. and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.Google Scholar
  10. 10.
    Grisar, T. 1984. Glial and neuronal Na+−K+-pump in epilepsy. Ann. Neurol. 16:S128-S134.Google Scholar
  11. 11.
    Grisar, T., Franck, G., and Delgado-Escueta, A. V. 1983. Glial contribution to seizures: K+ activation of Na+/K+/ ATPase in bulk isolated glial cells and synaptosomes of epileptogenic cortex. Brain Res. 261:75–84.Google Scholar
  12. 12.
    Grisar, T., Franck, G., and Delgado-Escueta, A. V. 1983. Na+−K+-ATPase within neurons and glia in the generation of seizures. Pages 199–208,in Delgado-Escueta, A. V., Wasterlain, C. G., Treiman, D. M., and Porter, R. J. (eds.), Advances in Neurology, Vol. 34: Status Epilepticus, Raven Press, New York.Google Scholar
  13. 13.
    Grisar, T., Frere, J. M., and Franck, G. 1979. Effect of K+ ions on kinetic properties of the (Na+−K+)-ATPase (E.C.3.6.1.3) of bulk isolated glial cells, perikarya and synaptosomes from rabbit brain cortex. Brain Res. 165:87–103.Google Scholar
  14. 14.
    Hamberger, A., Blomstrand, C., and Lehninger, A. L. 1970. Comparative studies on mitochondria isolated from neuronenriched and glia-enriched fractions of rabbit and beef brain. J. Cell Biol. 45:221–234.Google Scholar
  15. 15.
    Hamberger, A., and Svennerholm, L. 1971. Composition of gangliosides and phospholipids of neuronal and glial cell enriched fractions. J. Neurochem. 18:1821–1829.Google Scholar
  16. 16.
    Kimelberg, H. K., Biddlecome, S., Namuri, S., and Bourke, R. S. 1978. ATPase and carbonic anhydrase activities of bulk-isolated neuron, glia and synaptosome fractions from rat brain. Brain Res. 141:305–323.Google Scholar
  17. 17.
    Kimelberg, H. K., Namuri, S., Biddlecome, S., and Bourke, R. S. 1978. (Na++K+)ATPase,86Rb+ transport and carbonic anhydrase activity in isolated brain cells and cultured astrocytes. Pages 347–357,in Schoffeniels, E., Franck, G., Hertz, L., and Tower, D. B. (eds.), Dynamic Properties of Glia Cells, Pergamon Press, Oxford.Google Scholar
  18. 18.
    Klatzo, I. 1970. Neuropathological aspects of brain edema. J. Neuropathol. Exp. Neurol. 26:1–13.Google Scholar
  19. 19.
    Klatzo, I., Piraux, A., and Laskowski, E. J. 1958. The relationship between edema, blood brain barrier and tissue elements in a local brain injury. J. Neuropath. Exp. Neurol. 17:548–564.Google Scholar
  20. 20.
    Lewin, E. 1972. The production of epileptogenic cortical foci in experimental animals by freezing. Pages 37–49,in Purpura, D. P., Penry, J. K., Towe, O., Woodbury, D. M., and Walter, R. (eds.), Experimental Models of Epilepsy, Raven Press, New York.Google Scholar
  21. 21.
    Lewin, E., and Bleck, V. 1971. The effect of diphenylhydantoin administration on sodium-potassium-activated ATPase in cortex. Neurology 21:647–651.Google Scholar
  22. 22.
    Lewin, E., Charles, G., and McCrimmon, A. 1969. Discharging cortical lesions produced by freezing. The effect of anticonvulsants on sodium potassium activated ATPase, sodium and potassium in cortex. Neurology 19:565–569.Google Scholar
  23. 23.
    Lewin, E., and McCrimmon, A. 1967. ATPase activity in discharging cortical lesions induced by freezing. Arch. Neurol. 16:321–325.Google Scholar
  24. 24.
    Lewin, E., and McCrimmon, A. 1968. The intraluminar distribution of sodium-potassium activated ATPase activity in discharging cortical lesions induced by freezing. Brain Res. 8:291–297.Google Scholar
  25. 25.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  26. 26.
    Morrel, F. 1959. Experimental focal epilepsy in animals. Arch. Neurol. 33: vol. 1:141–147.Google Scholar
  27. 27.
    Morrel, F. 1959/60. Secondary epileptogenic lesions. Epilepsia 1:538–560.Google Scholar
  28. 28.
    Morrel, F. 1961. Microelectrode studies in chronic epileptic foci. Epilepsia 2:81–88.Google Scholar
  29. 29.
    Morrel, F., Proctor, F., and Prince, D. A. 1965. Epileptogenic properties of subcortical freezing, Neurology 15:744–751.Google Scholar
  30. 30.
    Nagata, Y., Mikoshiba, K., and Tsukada, Y. 1974. Neuronal cell body enriched and glial cell enriched fractions from young and adult rat brains: preparation and morphological and biochemical properties. J. Neurochem. 22:493–503.Google Scholar
  31. 31.
    Prior, W. A., and Stanley, J. P. 1975. A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids: Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J. Org. Chem. 40:3615–3617.Google Scholar
  32. 32.
    Rapport, R. L., and Ojemann, G. A. 1975. Prophylactically administered phenytoin. Effects on the development of chronic cobalt induced epilepsy in the cat. Arch. Neurol. 32:539–548.Google Scholar
  33. 33.
    Reulen, H. J. 1981. Pathophysiology of formation and natural resolution of vasogenic brain edema. Pages 31–48,in De Vlieger, M., De Lange, S. A., and Beks, J. W. F. (eds.), Brain Edema. Wiley Medical Publication, John Wiley & Sons, New York, Chichester, Brisbane, Toronto.Google Scholar
  34. 34.
    Rose, S. P. R. 1967. Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells. Biochem. J. 102:33–43.Google Scholar
  35. 35.
    Rose, S. P. R., and Sinha, A. K. 1974. Incorporation of amino acids into proteins in neuronal and neuropil fractions of rat cerebral cortex: presence of a rapidly labelling neuronal fraction. J. Neurochem. 23:1065–1076.Google Scholar
  36. 36.
    Savas, A. H., and Gilbert, J. C. 1984. Possible mechanism of inhibition by lipid peroxidation of ATPase activities of rat cerebral cortex synaptosomes. Arch. Int. Pharmacodyn. 269:4–11.Google Scholar
  37. 37.
    Sykova, E. 1983. Extracellular K+ accumulation in the central nervous system. Prog. Biophys. Molec. Biol. 42:135–189.Google Scholar
  38. 38.
    Summer, J. B. 1944. A method for colorimetric determination of phosphorus. Science (NY) 100:413–414.Google Scholar
  39. 39.
    Sun, A. Y. 1972. The effect of lipoxidation on synaptosomal (Na+−K+)ATPase isolated from the cerebral cortex of squirrel monkey. Biochim. Biophys. Acta 266:350–360.Google Scholar
  40. 40.
    Walz, W., and Hertz, L. 1983. Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Progress in Neurobiology 20:133–183.Google Scholar
  41. 41.
    Wheeler, K. P., Walker, J. A., and Barker, D. M. 1975. Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system. Biochem. J. 146:713–722.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • N. Avéret
    • 1
  • E. Arrigoni
    • 2
  • H. Loiseau
    • 1
  • F. Cohadon
    • 1
  1. 1.Laboratoire de Neurochirurgie Expérimentale et Neurobiologie, C. N. R. S. 040603Université de Bordeaux 11France
  2. 2.Istituto di Farmacologia, Facoltà di ScienzeUniversità di PaviaItaly

Personalised recommendations