Siberian Mathematical Journal

, Volume 33, Issue 5, pp 928–932 | Cite as

An estimate of length for tubular minimal surfaces of arbitrary codimension

  • V. A. Klyachin
Article
  • 20 Downloads

Keywords

Minimal Surface Arbitrary Codimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Vedenyapin and V. M. Miklyukov, “External dimensions of tubular minimal hypersurfaces,” Mat. Sb.,131, No. 2, 240–250 (1985).Google Scholar
  2. 2.
    V. M. Miklyukov and V. G. Tkachev “Some properties of tubular minimal surfaces of arbitrary codimension,” Mat. Sb.,180, No. 9, 1278–1295 (1989).Google Scholar
  3. 3.
    V. G. Tkachev, “External structure of minimal surfaces of parabolic type,” Thesis of Dissertation, Candidate of Phys. Mat. Sciences [in Russian], Nobosibirsk (1989).Google Scholar
  4. 4.
    Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York-London (1963).Google Scholar
  5. 5.
    A. D. Vedenyapin, “Geometric properties of tubular minimal surfaces inR n,” Thesis of Dissertation, Candidate of Phys. Mat. Sciences [in Russian], Novosibirsk (1989).Google Scholar
  6. 6.
    A. D. Aleksandrov, “Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it,” Leningrad Gos. Univ. Uchen. Zap. Ser. Mat. Nauk,6, 3–35 (1939).Google Scholar
  7. 7.
    U. Dierks, “Maximum principles and nonexistence results for minimal submanifolds,” Manuscripta Math.,69, 203–218 (1990).Google Scholar
  8. 8.
    R. Osserman and M. Schiffer, “Doubly connected minimal surfaces,” Arch. Rational Mech. Anal.,58, 285–306 (1974/75).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. A. Klyachin

There are no affiliations available

Personalised recommendations