Siberian Mathematical Journal

, Volume 34, Issue 2, pp 330–336 | Cite as

A Lorentz manifold with a group of conformal transformation containing a normal subgroup of homotheties

  • M. N. Podoksënov


Normal Subgroup Conformal Transformation Lorentz Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Barbance, “Transformations conformes des varietes Lorentziennes homogenes,” C. R. Acad. Sci. Sér. A.,291, No. 5, 314–350 (1980).Google Scholar
  2. 2.
    D. Alekseevski, “Selfsimilar Lorentzian manifolds,” Ann. Global Anal. Geom.,3, No. 1, 59–84 (1985).Google Scholar
  3. 3.
    M. N. Podoksënov, “A Lorentz manifold with a one-parameter group of homotheties possessing a closed isotropic orbit,” Sibirsk. Mat. Zh.,30, No. 5, 135–137 (1989).Google Scholar
  4. 4.
    M. N. Podoksënov, “Conformally homogeneous Lorentz manifolds. II,” Sibirsk. Mat. Zh.,33, No. 6, 154–161 (1992).Google Scholar
  5. 5.
    D. C. Duncan and E. C. Ihrig, “Homogeneous spacetimes of zero curvature,” Proc. Amer. Math. Soc.,107, No. 3, 785–795 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. N. Podoksënov

There are no affiliations available

Personalised recommendations