Skip to main content
Log in

Long-term persistence of GAD activity in injured crayfish CNS tissue

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Crayfish CNS fibers were isolated in vivo from their cell bodies, from cellular connections in the CNS, and from peripheral sensory and effector cells. The glutamic acid decarboxylase (GAD) activity of the experimental tissues was about half of that of the sham-operated and unoperated control tissues by two weeks after surgery and remained at about that level during the ensuing six weeks. During that time, there was no significant behavioral, electrophysiological, or histological evidence of regeneration of nerve fibers across the lesion sites. The crush-isolated connectives possessed many intact axon profiles and nonneuronal cell nuclei. The long-term persistence of GAD activity in the injured CNS tissue may reflect the involvement of glial cells in maintaining neurotransmitter levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, H., Edwards, J. S., and Palka, J. 1980. Developmental Neurobiology of Invertebrates. Ann. Rev. Neurosci. 3:97–139.

    PubMed  Google Scholar 

  2. Atwood, H. L., Govind, C. K., and Bittner G. D. 1973. Ultrastructure of Nerve Terminals and Muscle Fibers in Denervated Crayfish Muscle. Z. Zellforsch. 146:155–165.

    PubMed  Google Scholar 

  3. Bevan, S., Grampp, W., and Miledi, R. 1973. Further Observations on Schwann Cell M.E.P.P.S. J. Physiol. (Lond.) 232:88–89P.

    Google Scholar 

  4. Birks, R., Katz, B., and Miledi, R. 1960. Physiological and Structural Changes at the Amphibian Myoneural Junction in the Course of Nerve Degeneration. J. Physiol. (Lond.) 150:145–168.

    Google Scholar 

  5. Bittner, G. D. 1973. Degeneration and Regeneration in Crustacean Neuromuscular Systems. Amer. Zool. 13:379–408.

    Google Scholar 

  6. Bittner G. D. 1973. Trophic Dependence of Fiber Diameter in a Crustacean Muscle. Exp. Neurol. 41:38–53.

    PubMed  Google Scholar 

  7. Bittner, G. D., Ballinger, M. L., and Larimer, J. L. 1974. Crayfish CNS: Minimal Degenerative-Regenerative Changes after Lesioning. Exp. Zool. 189:13–36.

    Google Scholar 

  8. Bittner, G. D. 1977. Trophic Interactions of Crustacean Neurons, Pages 507–532.in Hoyle, G. (ed.), Identified Neurons and Behavior. Plenum Press.

  9. Bittner, G. D. 1981. Trophic Interactions of CNS Giant Axons in Crayfish. Comp. Biochem. Physiol. 68A:299–306.

    Google Scholar 

  10. Bouton, M. S., and Bittner, G. D. 1981. Regeneration of Motor Axons in Crayfish Limbs: Distal Stump Activation Followed by Synaptic Reformation. Cell Tissue Res. 219:379–392.

    PubMed  Google Scholar 

  11. Bullock, T. H., and Horridge, G. A. 1965. Structure and Function in the Nervous Systems of Invertebrates. Vol. II. pp. 801–984. W. H. Freeman & Co.

  12. Currie, D. N., and Kelly, J. S. 1981. Glial Versus Neuronal Uptake of Glutamate. J. Exp. Biol. 95:181–193.

    PubMed  Google Scholar 

  13. Grafstein, B., and Forman, D. S. 1980. Intracellular Transport in Neurons. Phys. Revs. 60:1167–1283.

    Google Scholar 

  14. Grossfeld, R. M., Yancey, S. W., and Hansen, D. B. 1983. Properties of Glutamic Acid Decarboxylase in Homogenates of Crayfish CNS Tissue and Effect of Crush on Enzyme Activity. Abst. Proc. Soc. Neurosci. 9:932.

    Google Scholar 

  15. Grossfeld, R. M., Yancey, S. W., and Baxter, C. F. 1984. Assay and Properties of Glutamic Acid Decarboxylase in Homogenates of Crayfish Nervous Tissue. Comp. Biochem. Physiol. 78B:287–298.

    Google Scholar 

  16. Hamberger, A., Cotman, C. W., Sellstrom, A., and Weiler, C. T. 1978. Glutamine, Glial Cells and Their Relationship to Transmitter Glutamate, Pages 163–172,in Schoffeniels, E., Franck, G., Hertz, L. and Tower, D. B. (eds.), Dynamic Properties of Glia Cells, Pergamon Press.

  17. Hamberger, A., Jacobson, I., Lindroth, P., Mopper, K., Nystrom, B., Sandberg, M., Molin, S.-O., and Svanberg, U. 1981. Neuron-Glia Interactions in the Biosynthesis and Release of Transmitter Amino Acids, Pages 509–518,in De-Feudis, F. V. and Mandel, P. (eds.) Amino Acid Neurotransmitters. Raven Press.

  18. Henn, F. A. 1976. Neurotransmission and Glial Cells: A Functional Relationship? J. Neurosci. Res. 2:271–282.

    PubMed  Google Scholar 

  19. Hertz, L. 1979. Functional Interactions Between Neurons and Astrocytes. I. Turnover and Metabolism of Putative Amino Acid Transmitters. Prog. Neurobiol. 13:277–323.

    PubMed  Google Scholar 

  20. Hoy, R. R., Bittner, G. D., and Kennedy, D. 1967. Regeneration in Crustacean Motoneurons: Evidence for Axonal Fusion. Science 156:251–252.

    PubMed  Google Scholar 

  21. Hoy, R. R. 1969. Degeneration and Regeneration in Abdominal Flexor Motor Neurons in the Crayfish. J. Exp. Zool. 172:219–232.

    PubMed  Google Scholar 

  22. Hoy, R. R. 1973. The Curious Nature of Degeneration and Regeneration in Motor Neurons and Central Connectives of the Crayfish, Pages 203–232.in Young, D. (ed.), Developmental Neurobiology of Arthropods. Cambridge University Press.

  23. Krasne, F. B., and Wine, J. J. 1977. Control of Crayfish Escape Behavior, Pages 279–291. in Hoyle, G. (ed.) Identified Neurons and Behavior of Arthropods. Plenum Press.

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  25. Norlander, R. H., and Singer, M. 1972. Electron Microscopy of Severed Motor Fibers in the Crayfish. Z. Zellforsch. 126:157–181.

    PubMed  Google Scholar 

  26. Nordlander, R., and Singer, M. 1973. Degeneration and Regeneration of Severed Crayfish Sensory Fibers: An Ultrastructural Study. J. Comp. Neurol. 152:175–192.

    PubMed  Google Scholar 

  27. Roberts, E. 1962. Gamma-Aminobutyric Acid, Pages 636–656,in Elliott, K. A. C., Page, I. H., and Quastel, J. H. (eds.), Neurochemistry-Second edition, Charles C. Thomas Pub.

  28. Sarne, Y., Neale, E. A., and Gainer, H. 1976. Protein Metabolism in Transected Peripheral Nerves of The Crayfish. Brain Res. 110:73–89.

    PubMed  Google Scholar 

  29. Sarne, Y., Schrier, B. K., and Gainer, H. 1976. Evidence for the Local Synthesis of a Transmitter Enzyme (Glutamic Acid Decarboxylase) in Crayfish Peripheral Nerve. Brain Res. 110:91–97.

    PubMed  Google Scholar 

  30. Schlaepfer W. W. 1974. Calcium-Induced Degeneration of Axoplasm in Isolated Segments of Rat Peripheral Nerve. Brain Res. 69:203–215.

    PubMed  Google Scholar 

  31. Van Harreveld, A. 1936. A Physiological Solution for Fresh Water Crustaceans. Proc. Soc. Exp. Biol. Med. 34:428–432.

    Google Scholar 

  32. Welsch, F., Dettbarn, W.-D., and Landon, E. J. 1974. The Effects of Nerve Transection in Walking Legs of Lobster on Acetylcholine, Acetylcholinesterase, Choline Acetyltransferase Adenosine Triphosphatase and Protein Composition. Comp. Biochem. Physiol. 47A:943–957.

    Google Scholar 

  33. Wine, J. J. 1973. Invertebrate Central Neurons: Orthograde Degeneration and Retrograde Changes After Axonotomy. Exp. Neurol. 38:157–169.

    PubMed  Google Scholar 

  34. Wine, J. J. 1973. Invertebrate Synapse: Long-Term Maintenance of Postsynaptic Morphology Following Denervation. Exp. Neurol. 41:649–660.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. E. M. Shooter and Dr. S. Varon as part of a special issue (Neurochemical Research, Vol. 12, No. 10, 1987).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossfeld, R.M., Hansen, D.B. Long-term persistence of GAD activity in injured crayfish CNS tissue. Neurochem Res 12, 977–983 (1987). https://doi.org/10.1007/BF00970926

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970926

Key words

Navigation