Advertisement

Neurochemical Research

, Volume 12, Issue 11, pp 977–983 | Cite as

Long-term persistence of GAD activity in injured crayfish CNS tissue

  • Robert M. Grossfeld
  • Douglas B. Hansen
Original Articles

Abstract

Crayfish CNS fibers were isolated in vivo from their cell bodies, from cellular connections in the CNS, and from peripheral sensory and effector cells. The glutamic acid decarboxylase (GAD) activity of the experimental tissues was about half of that of the sham-operated and unoperated control tissues by two weeks after surgery and remained at about that level during the ensuing six weeks. During that time, there was no significant behavioral, electrophysiological, or histological evidence of regeneration of nerve fibers across the lesion sites. The crush-isolated connectives possessed many intact axon profiles and nonneuronal cell nuclei. The long-term persistence of GAD activity in the injured CNS tissue may reflect the involvement of glial cells in maintaining neurotransmitter levels.

Key words

CNS injury GAD glia crayfish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, H., Edwards, J. S., and Palka, J. 1980. Developmental Neurobiology of Invertebrates. Ann. Rev. Neurosci. 3:97–139.PubMedGoogle Scholar
  2. 2.
    Atwood, H. L., Govind, C. K., and Bittner G. D. 1973. Ultrastructure of Nerve Terminals and Muscle Fibers in Denervated Crayfish Muscle. Z. Zellforsch. 146:155–165.PubMedGoogle Scholar
  3. 3.
    Bevan, S., Grampp, W., and Miledi, R. 1973. Further Observations on Schwann Cell M.E.P.P.S. J. Physiol. (Lond.) 232:88–89P.Google Scholar
  4. 4.
    Birks, R., Katz, B., and Miledi, R. 1960. Physiological and Structural Changes at the Amphibian Myoneural Junction in the Course of Nerve Degeneration. J. Physiol. (Lond.) 150:145–168.Google Scholar
  5. 5.
    Bittner, G. D. 1973. Degeneration and Regeneration in Crustacean Neuromuscular Systems. Amer. Zool. 13:379–408.Google Scholar
  6. 6.
    Bittner G. D. 1973. Trophic Dependence of Fiber Diameter in a Crustacean Muscle. Exp. Neurol. 41:38–53.PubMedGoogle Scholar
  7. 7.
    Bittner, G. D., Ballinger, M. L., and Larimer, J. L. 1974. Crayfish CNS: Minimal Degenerative-Regenerative Changes after Lesioning. Exp. Zool. 189:13–36.Google Scholar
  8. 8.
    Bittner, G. D. 1977. Trophic Interactions of Crustacean Neurons, Pages 507–532.in Hoyle, G. (ed.), Identified Neurons and Behavior. Plenum Press.Google Scholar
  9. 9.
    Bittner, G. D. 1981. Trophic Interactions of CNS Giant Axons in Crayfish. Comp. Biochem. Physiol. 68A:299–306.Google Scholar
  10. 10.
    Bouton, M. S., and Bittner, G. D. 1981. Regeneration of Motor Axons in Crayfish Limbs: Distal Stump Activation Followed by Synaptic Reformation. Cell Tissue Res. 219:379–392.PubMedGoogle Scholar
  11. 11.
    Bullock, T. H., and Horridge, G. A. 1965. Structure and Function in the Nervous Systems of Invertebrates. Vol. II. pp. 801–984. W. H. Freeman & Co.Google Scholar
  12. 12.
    Currie, D. N., and Kelly, J. S. 1981. Glial Versus Neuronal Uptake of Glutamate. J. Exp. Biol. 95:181–193.PubMedGoogle Scholar
  13. 13.
    Grafstein, B., and Forman, D. S. 1980. Intracellular Transport in Neurons. Phys. Revs. 60:1167–1283.Google Scholar
  14. 14.
    Grossfeld, R. M., Yancey, S. W., and Hansen, D. B. 1983. Properties of Glutamic Acid Decarboxylase in Homogenates of Crayfish CNS Tissue and Effect of Crush on Enzyme Activity. Abst. Proc. Soc. Neurosci. 9:932.Google Scholar
  15. 15.
    Grossfeld, R. M., Yancey, S. W., and Baxter, C. F. 1984. Assay and Properties of Glutamic Acid Decarboxylase in Homogenates of Crayfish Nervous Tissue. Comp. Biochem. Physiol. 78B:287–298.Google Scholar
  16. 16.
    Hamberger, A., Cotman, C. W., Sellstrom, A., and Weiler, C. T. 1978. Glutamine, Glial Cells and Their Relationship to Transmitter Glutamate, Pages 163–172,in Schoffeniels, E., Franck, G., Hertz, L. and Tower, D. B. (eds.), Dynamic Properties of Glia Cells, Pergamon Press.Google Scholar
  17. 17.
    Hamberger, A., Jacobson, I., Lindroth, P., Mopper, K., Nystrom, B., Sandberg, M., Molin, S.-O., and Svanberg, U. 1981. Neuron-Glia Interactions in the Biosynthesis and Release of Transmitter Amino Acids, Pages 509–518,in De-Feudis, F. V. and Mandel, P. (eds.) Amino Acid Neurotransmitters. Raven Press.Google Scholar
  18. 18.
    Henn, F. A. 1976. Neurotransmission and Glial Cells: A Functional Relationship? J. Neurosci. Res. 2:271–282.PubMedGoogle Scholar
  19. 19.
    Hertz, L. 1979. Functional Interactions Between Neurons and Astrocytes. I. Turnover and Metabolism of Putative Amino Acid Transmitters. Prog. Neurobiol. 13:277–323.PubMedGoogle Scholar
  20. 20.
    Hoy, R. R., Bittner, G. D., and Kennedy, D. 1967. Regeneration in Crustacean Motoneurons: Evidence for Axonal Fusion. Science 156:251–252.PubMedGoogle Scholar
  21. 21.
    Hoy, R. R. 1969. Degeneration and Regeneration in Abdominal Flexor Motor Neurons in the Crayfish. J. Exp. Zool. 172:219–232.PubMedGoogle Scholar
  22. 22.
    Hoy, R. R. 1973. The Curious Nature of Degeneration and Regeneration in Motor Neurons and Central Connectives of the Crayfish, Pages 203–232.in Young, D. (ed.), Developmental Neurobiology of Arthropods. Cambridge University Press.Google Scholar
  23. 23.
    Krasne, F. B., and Wine, J. J. 1977. Control of Crayfish Escape Behavior, Pages 279–291. in Hoyle, G. (ed.) Identified Neurons and Behavior of Arthropods. Plenum Press.Google Scholar
  24. 24.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  25. 25.
    Norlander, R. H., and Singer, M. 1972. Electron Microscopy of Severed Motor Fibers in the Crayfish. Z. Zellforsch. 126:157–181.PubMedGoogle Scholar
  26. 26.
    Nordlander, R., and Singer, M. 1973. Degeneration and Regeneration of Severed Crayfish Sensory Fibers: An Ultrastructural Study. J. Comp. Neurol. 152:175–192.PubMedGoogle Scholar
  27. 27.
    Roberts, E. 1962. Gamma-Aminobutyric Acid, Pages 636–656,in Elliott, K. A. C., Page, I. H., and Quastel, J. H. (eds.), Neurochemistry-Second edition, Charles C. Thomas Pub.Google Scholar
  28. 28.
    Sarne, Y., Neale, E. A., and Gainer, H. 1976. Protein Metabolism in Transected Peripheral Nerves of The Crayfish. Brain Res. 110:73–89.PubMedGoogle Scholar
  29. 29.
    Sarne, Y., Schrier, B. K., and Gainer, H. 1976. Evidence for the Local Synthesis of a Transmitter Enzyme (Glutamic Acid Decarboxylase) in Crayfish Peripheral Nerve. Brain Res. 110:91–97.PubMedGoogle Scholar
  30. 30.
    Schlaepfer W. W. 1974. Calcium-Induced Degeneration of Axoplasm in Isolated Segments of Rat Peripheral Nerve. Brain Res. 69:203–215.PubMedGoogle Scholar
  31. 31.
    Van Harreveld, A. 1936. A Physiological Solution for Fresh Water Crustaceans. Proc. Soc. Exp. Biol. Med. 34:428–432.Google Scholar
  32. 32.
    Welsch, F., Dettbarn, W.-D., and Landon, E. J. 1974. The Effects of Nerve Transection in Walking Legs of Lobster on Acetylcholine, Acetylcholinesterase, Choline Acetyltransferase Adenosine Triphosphatase and Protein Composition. Comp. Biochem. Physiol. 47A:943–957.Google Scholar
  33. 33.
    Wine, J. J. 1973. Invertebrate Central Neurons: Orthograde Degeneration and Retrograde Changes After Axonotomy. Exp. Neurol. 38:157–169.PubMedGoogle Scholar
  34. 34.
    Wine, J. J. 1973. Invertebrate Synapse: Long-Term Maintenance of Postsynaptic Morphology Following Denervation. Exp. Neurol. 41:649–660.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Robert M. Grossfeld
    • 1
  • Douglas B. Hansen
    • 1
  1. 1.Zoology Dept.North Carolina State UniversityRaleigh

Personalised recommendations