Siberian Mathematical Journal

, Volume 30, Issue 6, pp 873–877 | Cite as

Sylow theory for groups of finite Morley rank

  • A. V. Borovik
Article
  • 24 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. GorensteiN, Finite Groups, Harper and Row, New York (1968).Google Scholar
  2. 2.
    Handbook of Mathematical Logic, Part 1: Model Theory [in Russian], Nauka, Moscow (1982).Google Scholar
  3. 3.
    J. Humphreys, Linear Algebraic Groups, Springer-Verlag (1975).Google Scholar
  4. 4.
    S. Shelah, Classification Theory and the Number of Nonisomorphic Models, North Holland, Amsterdam (1978).Google Scholar
  5. 5.
    B. Poizat, “Une théorie de Galois imaginaire,” J. Symbol. Logic,48, No. 5, 1151–1170 (1983).Google Scholar
  6. 6.
    B. Poizat, Cours de Théorie des Modèles, Nur al-Mantig wal-Ma'rifah, Villeurbanne (1985).Google Scholar
  7. 7.
    B. Poizat, Groupes Stables, Nur al-Mantig wal-Ma'rifah, Villeurbanne (1987).Google Scholar
  8. 8.
    A. V. Borovik, “Theory of finite groups and uncountably categorical groups,” Preprint, Academy of Sciences of the USSR, Siberian Branch, Computation Center, No. 511, Novosibirsk (1984).Google Scholar
  9. 9.
    G. Cherlin, “Groups of small Morley rank,” Ann. Math. Logic,17, No. 1, 1–28 (1979).Google Scholar
  10. 10.
    B. I. Zil'ber, “Groups and rings whose theories are categorical,” Fund. Math.,95, No. 2, 173–188 (1977).Google Scholar
  11. 11.
    R. Brauer, “On the structure of groups of even order,” in: International Mathematical Congress in Amsterdam 1954 [Russian translation], Moscow (1961), pp. 23–25.Google Scholar
  12. 12.
    A. V. Borovik, “Involutions in groups with dimension,” Preprint, Academy of Sciences of the USSR, Siberian Branch, Computation Center, No. 512, Novosibirsk (1984).Google Scholar
  13. 13.
    A. V. Borovik, “Sylow 2-subgroups of uncountably categorical groups,” in: 18th All-Union Algebra Conference, Abstracts of Reports, Part 1, Kishinev (1985), p. 63.Google Scholar
  14. 14.
    T. M. Gagen, “Some questions in the theory of finite groups,” in: The Theory of Finite Groups [Russian translation], Mir, Moscow (1979), pp. 13–97.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. V. Borovik

There are no affiliations available

Personalised recommendations