Siberian Mathematical Journal

, Volume 28, Issue 2, pp 178–191 | Cite as

The L. de Branges proof of the I. M. Milin and L. Bieberbach conjectures

  • I. A. Aleksandrov


Bieberbach Conjecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. 1.
    I. E. Bazilevich, “Domains of the initial coefficients of bounded univalent functions with p-fold symmetry,” Mat. Sb.,43, 409–428 (1957).Google Scholar
  2. 2.
    K. I. Babenko, “On a theory of extremal problems for univalent functions of the class S,” Trudy Mat. Inst. Steklova Akad. Nauk SSSR,101, 1–318 (1972).Google Scholar
  3. 3.
    A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, Colloquium Publ. No. 35, Am. Math. Soc., Providence (1950).Google Scholar
  4. 4.
    L. Bieberbach, “Über die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitteln,” Sitzber. Preuss. Akad. Wiss., 940–955 (1916).Google Scholar
  5. 5.
    K. Löwner “Untersuchungen über schlichte konforme Abbildung des Einheitkreises. I,” Math. Ann.,89, 103–121 (1923).Google Scholar
  6. 6.
    P. R. Garabedian and M. A. Schiffer, “A proof of the Bieberbach conjecture for the fourth coefficient,” J. Rat. Mech. Anal.,4, 427–465 (1955).Google Scholar
  7. 7.
    R. N. Pederson, “A proof of the Bieberbach conjecture for the sixth coefficient,” Arch. Rat. Mech. Anal.,31, 331–351 (1968).Google Scholar
  8. 8.
    M. Ozawa, “An elementary proof of the Bieberbach conjecture for the sixth coefficient,” Kodai Math. Semin. Repts.,21, 129–132 (1969).Google Scholar
  9. 9.
    R. N. Pederson and M. A. Schiffer, “A proof of the Bieberbach conjecture for the fifth coefficient,” Arch. Rat. Mech. Anal.,45, 161–193 (1972).Google Scholar
  10. 10.
    J. E. Littlewood, “On inequalities of the theory of functions,” Proc. London Math. Soc.,23, 481–519 (1925).Google Scholar
  11. 11.
    I. E. Bazilevich, “On theorems of distortion and the coefficients of univalent functions,” Mat. Sb.,28, 147–164 (1951).Google Scholar
  12. 12.
    I. M. Milin, “An estimate of the coefficients of univalent functions,” Dokl. Akad. Nauk SSSR,160, 769–771 (1965).Google Scholar
  13. 13.
    C. H. Fitzgerald, “Exponentiation of certain quadratic inequalities for schlicht functions,” Bull. Am. Math. Soc.,78, 209–210 (1972).Google Scholar
  14. 14.
    D. Horowitz, “A refinement for coefficient estimates of univalent functions,” Proc. Am. Math. Soc.,54, 176–178 (1976).Google Scholar
  15. 15.
    W. K. Hayman, Multivalent Functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge Univ. Press (1958).Google Scholar
  16. 16.
    I. E. Bazilevich, “On a criterion of univalency of regular functions and the dispersion of their coefficients,” Mat. Sb.,74, 133–146 (1967).Google Scholar
  17. 17.
    I. M. Milin, Univalent Functions and Orthonormal Systems, Am. Math. Soc., Providence, R.I. (1977).Google Scholar
  18. 18.
    A. Z. Grinshpan, “Logarithmic coefficients of functions of the class S,” Sib. Mat. Zh.,13, 1145–1157 (1972).Google Scholar
  19. 19.
    L. de Branges, “A proof of the Bieberbach conjecture,” Preprint E-5-84, Steklov Math. Inst., Leningrad Branch (1984), pp. 1–21.Google Scholar
  20. 20.
    L. de Branges, “A proof of the Bieberbach conjecture,” Acta Math.,154, 137–152 (1985).Google Scholar
  21. 21.
    I. A. Aleksandrov, Parametric Continuations in the Theory of Univalent Functions [in Russian], Nauka, Moscow (1976).Google Scholar
  22. 22.
    O. M. Fomenko and G. V. Kuz'mina, “The last 100 days of the Bieberbach conjecture,” Math. Intell.,8, No. 1, 40–47 (1986).Google Scholar
  23. 23.
    N. A. Lebedev and I. M. Milin, “On an inequality,” Vestn. Leningr. Gos. Univ.,19, No. 4, 157–158 (1965).Google Scholar
  24. 24.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • I. A. Aleksandrov

There are no affiliations available

Personalised recommendations