Lithuanian Mathematical Journal

, Volume 30, Issue 2, pp 120–125 | Cite as

Compactness of families of univalent functions defined by the intersection of two hyperplanes

  • E. G. Kirjackij
  • S. I. Khavinson


Univalent Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. G. Kir'yatskii, “A limit property of functions with nonzero divided difference,” Liet. Mat. Rinkinys,18, No. 2, 47–61 (1978).Google Scholar
  2. 2.
    E. G. Kir'yatskii, “Properties of functions with nonzero divided difference,” Liet. Mat. Rinkinys,19, No. 1, 97–133 (1979).Google Scholar
  3. 3.
    B. E. Gopengauz, “Classes of analytic functions,” Trudy Tomsk. Univ., 189 (1966).Google Scholar
  4. 4.
    A. I. Markushevich, “Basis (in the broad sense) for linear spaces,” Dokl. Akad. Nauk SSSR,12, No. 6, 241–243 (1934).Google Scholar
  5. 5.
    A. I. Markushevich, Theory of Analytic Functions [in Russian], Vol. 2, Gostekhizdat, Moscow-Leningrad (1968), pp. 574–575.Google Scholar
  6. 6.
    G. Köthe, “Dualität in der Funktionen theorie. I,” Reine Angew. Math.,191, Nos. 1–2, 30–49 (1953).Google Scholar
  7. 7.
    V. P. Khavin, “Spaces of analytic functions,” Itogi Nauki Tekhn. Seriya Matematicheskii Analiz. 76–164 (1966).Google Scholar
  8. 8.
    I. A. Aleksandrov, Parametric Extension in the Theory of Univalent Functions, [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • E. G. Kirjackij
  • S. I. Khavinson

There are no affiliations available

Personalised recommendations