Skip to main content
Log in

An extension of a theorem of K. Yamada to equations “with memory”

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. P. Billingsley, “Convergence of probability measures,” New York: Wiley (1968).

    Google Scholar 

  2. A. Bensoussan, “On the theory of option pricing” Acta Aplicandae Mathematicae,2, 139–158 (1984).

    Google Scholar 

  3. C. Dellacherie and P. A. Meyer, Probabilitiés et Potentiel, Herman Act. Sc. et. Ind. Paris, 1385 (1980).

  4. M. Emery, “Stabilité des solutions des équations differentielles stochastiques: application aux integrales multiplicatives stochastiques,” Z. Wahrsch. Verw. Geb.,41, 241–262 (1978).

    Google Scholar 

  5. M. Emery, “Equations différentielles lipschitzinennes: étude de la stabilité,” Lecture Notes in Math., Springer-Verlag,714 (1979).

  6. N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” Amsterdam: North-Holland (1981).

    Google Scholar 

  7. J. Jacod, “Calcul stochastique et problemes de martingales,” Lecture Notes in Math., Springer-Verlag,714 (1979).

  8. J. Jacod, “Théorémes limite pour les processus,” Lecture Notes in Math., Springer-Verlag,1117, 299–409 (1983).

    Google Scholar 

  9. J. Jacod and J. Memin, “Weak and strong solutions of stochastic differential equations: existence and stability,” Lecture Notes in Maths. (Stochastic Integrals), Springer-Verlag,851, 169–212 (1981).

    Google Scholar 

  10. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag (1987).

    Google Scholar 

  11. P. Kind, “Option valuation in a continuous-time conditional variance model of asset price returns,” Univ. of Chicago, Department of Economics, Preprint (1988).

  12. G. Letta, “Martingales et integration stochastique,” Quaderni della Scuola Normale Superiore, Pisa (1984).

  13. R. Sh. Liptser and A. N. Shiryaev, Theory of Martingales, North-Holland, Kluwer Acad. Publ. (1989).

  14. D. L. McLeish, “An extended martingale principle,” Ann. Probab.,6, 144–150 (1978).

    Google Scholar 

  15. M. Métivier, “Sufficient conditions for tightness and weak convergence of a sequence of processes,” Univ. of Minnesota, Internal Report 55455 (1979).

  16. M. Métivier, Semimartingales, a Course on Stochastic Processes, Berlin; New York: W. de Gruyter (1982).

    Google Scholar 

  17. M. Métivier, “Stability theorems for stochastic integral equations driven by random measures and semimartingales,” J. Integral Equations,3, 109–135 (1981).

    Google Scholar 

  18. M. Métivier and J. Pellaumail, Stochastic Integration, Academic Press (1980).

  19. L. Pratelli, “Invariance des notions de semimartingale et d'integrale stochastique par un changement d'espace,” Pub. Dip. Mat. Univ. di Pisa, No. 262 (1988).

  20. Ph. Protter, “HP stability of solutions of stochastdic differential equations,” Z. Wahrsch. Verw. Geb.,44, 337–352 (1978).

    Google Scholar 

  21. R. Rebolledo, “La méthode des martingales appliquée à l'etude de la convergence en loi des processus,” Mem. Soc. Math., France, No. 62 (1979).

  22. R. Rebolledo, “Central limit theorems for local martingales,” Z. Wahrsch. Verw. Geb.,51, 269–286 (1980).

    Google Scholar 

  23. L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales, J. Wiley and Sons (1987).

  24. L. Slominski, “Stability of strong solution sof stochastic differential equations,” Stochastic Processes Appl.,31, 173–202 (1989).

    Google Scholar 

  25. F. Topsoe, “Topology and measure,” Lecture Notes in Math., Springer-Verlag,133 (1970).

  26. K. Yamada, “A stability theorem for stochastic differential equations and application to stochastic control problems,” Stochastics,13, 257–279 (1984).

    Google Scholar 

  27. K. Yamada, “A stability theorem for stochastic differential equations with application to storage processes, random walks and optimal stochastic control problems,” Stochastic Processes Appl.,23, 199–220 (1986).

    Google Scholar 

  28. P. A. Zanzotto, “On the stability of stochastic differential equations ‘with memory’,” Rend. Acc. Naz. Sc. detta dei XL.,XIII (1989).

  29. P. A. Zanzotto, “A stability theorem for a class of stochastic differential equations ‘with memory’,” Rend. Acc. Naz. Sc. detta dei XL,XIII (1989).

Download references

Authors

Additional information

Dipartimento di Matematica, Via Buonarroti, 2-56100 Pisa, Italy. Published in Litovskii Matematicheskii Sbornik (Lietuvos Matematikos Rinkinys), Vol. 31, No. 2, pp. 282–301, April–June, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanzotto, P.A. An extension of a theorem of K. Yamada to equations “with memory”. Lith Math J 31, 188–204 (1991). https://doi.org/10.1007/BF00970816

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970816

Navigation