Skip to main content
Log in

A gas chromatographic method for the determination of inositol monophosphates in rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Regional levels of cerebral inositol-1-phosphate (Ins1P), an intermediate in phosphoinositide (PI) cycle, were readily detected with a new gas chromatographic (GC) method. GC analysis of trimethylsilyated Ins1P and myo-inositol-2-phosphate with a fused silica capillary SE-30 column and flame ionization detection was linear at picomolar range (pmol/μl) with a sensitivity to a level of 2 pmol. Also, inositol monophosphates and glucose-6-phosphate are separated in unstimulated brain tissue. The mean recovery of the method is 98±5.2%. Ins 1P levels were higher in frontal than in caudal regions in control brains. Lithium treatment increased the levels of Ins1P throughout the brain but mostly in frontal brain regions and in the hippocampus. The present GC assay to measure the accumulation of Ins1P, an index for the activity of PI signalling, may be suitable for exploring regional differences in cerebral receptor-coupled PI signalling in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michell, R. H., and Kirk, C. 1986. G-protein control of in-ositol phosphate hydrolysis. Nature (London) 323:112–113.

    Google Scholar 

  2. Putney, J. W., Jr. 1987. Formation and actions of calciummobilizing messenger, inositol 1,4,5-trisphosphate. Am. J. Physiol. 252, (Gastrointest. Liver Physiol. 15):G149-G157.

    PubMed  Google Scholar 

  3. Berridge, M. J., and Irvine, R. F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321.

    PubMed  Google Scholar 

  4. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C. Science 233:305–312.

    PubMed  Google Scholar 

  5. Hallcher, L. M., and Sherman, W. R. 1980. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255:10896–10901.

    PubMed  Google Scholar 

  6. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206:587–595.

    PubMed  Google Scholar 

  7. Berridge, M. J. 1986. Inositol phosphates as second messengers. Pages 25–45,in Putney, J. W. (ed.), Phosphoinositides and receptor mechanisms, Alan R. Liss, Inc., New York.

    Google Scholar 

  8. Irvine, R. F. 1986. The structure, metabolism, and analysis of inositol lipids and inositol phosphates. Pages 89–107,in Putney, J. W. (ed.), Phosphoinositides and receptor mechanisms, Alan R. Liss, Inc., New York.

    Google Scholar 

  9. Allison, J. H., Blisner, M. E., Holland, W. H., Hipps, P. P., and Sherman, W. R. 1976. Increased brain myo-inositol-1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71:664–670.

    PubMed  Google Scholar 

  10. Sherman, W. R., Leavitt, A. L., Honchar, M. P., Hallcher, L. M., and Phillips, B. E. 1981. Evidence that lithium alters phosphoinositide metabolism: Chronic administration elevates primarilyd-myo-inositol-1-phosphate in cerebral cortex of the rat. J. Neurochem. 36:1947–1951.

    PubMed  Google Scholar 

  11. Sherman, W. R., Munsell, L. Y., Gish, B. G., and Honchar, M. P. 1985. Effect of systemically administered lithium on phosphoinositide metabolism in rat brain, kidney and testis. J. Neurochem. 44:798–807.

    PubMed  Google Scholar 

  12. Eisenberg, F. 1967.d-Myoinositol as a product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242:1375–1382.

    PubMed  Google Scholar 

  13. Leavitt, A. L., and Sherman, W. R. 1982. Resolution ofDl-myo-inositol 1-Phosphate and other sugar enantiomers by gas Chromatography. Methods Enzymol. 89:3–9.

    Google Scholar 

  14. Pellegrino, L. J., Pellegrino, A. S., and Cushman, A. J. 1979. A stereotaxic atlas of the rat brain, 2nd ed., Plenum Press, New York.

    Google Scholar 

  15. Harvey, D. I., Horning, M. G. 1973. Characterization of the trimethylsilyl derivatives of sugar phosphates and related compounds by gas chromatography and gas chromatography/mass spectrometry. Chrom. 6419:51–62.

    Google Scholar 

  16. Binder, H., Weber, P. C., and Siess, W. 1985. Separation of inositol phosphates and glycerophosphoinositol phosphates by high performance liquid chromatography. Anal. Biochem. 148:220–227.

    PubMed  Google Scholar 

  17. Downes, C. P., and Michell, R. H. 1981. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem. J. 203:169–177.

    Google Scholar 

  18. Batty, I. R., Nahorski, S. R., and Irvine, R. F. 1985. Rapid formation of inositol 1,3,4,5,-tetrakis-phosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232:211–215.

    PubMed  Google Scholar 

  19. Irvine, R. F. 1986. The structure, metabolism, and analysis of inositol lipids and inositol phosphates Pages 87–107,in Putney, J. W. (ed.), Phosphoinositides and receptor mechanisms, Alan R. Liss, Inc., New York.

    Google Scholar 

  20. Van Rooijen, L. A. A., Vadnal, R., Dobard, P. and Bazan, N. G. 1986. Enchanced inositide turnover in brain during bicuculline-induced status epilepticus. Biochem. Biophys. Res. Commun. 136:827–834.

    PubMed  Google Scholar 

  21. Sherman, W. R., Honchar, M. P., Munsell, L. Y. 1985. Detection of receptor-linked phosphoinositide metabolism in brain of lithium-treated rats. Pages 49–65,in Bleasdale, J. E., Eichberg, J., Hauser, G. (eds), Inositol and Phosphoinositides: Metabolism and regulation, Humana Press, Clifton, New Jersey.

    Google Scholar 

  22. Sherman, W. R., Ackerman, K. E., Berger, R. A., Gish, B. G., and Zinbo, M. 1985. Analysis of inositol mono- and polyphosphates by GC/MS and FAB. Biomed Environ Mass Spectrum. 13:333–341.

    Google Scholar 

  23. Honchar, M. P., Olney, J. W., and Sherman, W. R. 1983. Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325.

    PubMed  Google Scholar 

  24. Sherman, W. R., Gish, B. G., Honchar, M. P., and Munsell, L. Y., 1986. Studies on the effect of lithium on phosphoinositide metabolism in vivo. Fed. Proc. 45:2639–2646.

    PubMed  Google Scholar 

  25. Majerus, P. W., Connolly, T. M., Bansal,V. S., Inhorn, R. C., Ross, T. S., and Lips, D. L. 1988. Inositol Phosphates: Synthesis and Degradation. J. Biol. Chem. 263:3051–3054.

    PubMed  Google Scholar 

  26. Savolainen, K., Nelson, S. R., Samson, F. E., and Pazdernik, 1986. Lithium potentiates soman-induced seizures and modifies alterations in cerebral myo-inositol-1-phosphate levels. Abstract of the Neuroscience Annual Conference, Washington, D.C.

  27. Hirvonen M.-R., Komulainen, H., Lihtamo, H. Paljärvi, L., and Savolainen, K. 1987. Effects of malaoxon on rat brain myo-inositol-1-phosphate levels Abstract of the XXXIII Nordic Meeting of Pharmacology, June 2–5, 1987, Kuopio, Finland.

  28. Savolainen, K., Terry, J. T., Nelson, S. R., Samson, F. E., Pazdernik, 1987. Seizures and cerebral myo-inositol-1-phosphate levels in DFP-treated rats. Abstract of 27th Congress of European Society of Toxicology, September 17–19, 1987, Strasbourg, France.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirvonen, MR., Lihtamo, H. & Savolainen, K. A gas chromatographic method for the determination of inositol monophosphates in rat brain. Neurochem Res 13, 957–962 (1988). https://doi.org/10.1007/BF00970768

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970768

Key Words

Navigation