Neurochemical Research

, Volume 13, Issue 10, pp 909–916 | Cite as

Action ofl-acetylcarnitine on age-dependent modifications of mitochondrial membrane proteins from rat cerebellum

  • R. F. Villa
  • L. Turpeenoja
  • G. Benzi
  • A. M. Giuffrida Stella
Original Articles


Protein patterns of mitochondrial outer membrane, inner membrane, and matrix from nonsynaptic (free) mitochondria from rat cerebellum at different ages (4, 8, 12, 16, 20, and 24 months) were analyzed by gel electrophoresis. Acutel-acetylcarnitine treatment was per-formed by a single i.p. injection (100 mg/kg body weight) of the substance 60 min before the sacrifice of the animals. Different age-dependent changes were obtained for the proteins of the three fractions. The amount of some protein subunits increased and/or decreased after drug treatment. In particular, protein composition of the inner mitochondrial membrane showed significant age-related modifications. This result probably indicates differences in protein synthesis and/or turnover rates in the various mitochondrial compartments during aging. Acutel-acetylcarnitine treatment caused: a high increase in the amount of one inner membrane protein with Mw 16 kDa, at all the ages studied; a decrease in the amount of many other inner membrane proteins; modifications of some matrix proteins. Our results show that in vivo administration ofl-acetylcarnitine affects mainly the inner membrane protein composition of cerebellar mitochondria.

Key Words

l-Acetylcarnitine cerebellum mitochondrial membranes proteins aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klingenberg, M., and Bode, C. 1965. Some aspects of the role of carnitine in fatty acid oxidation. Pages 87–95,in Wolf, G. (ed.), Recent Research in Carnitine. MIT Press, Cambridge.Google Scholar
  2. 2.
    Pande, S. V., and Parvin, R. 1976. Characterization of carnitine acylcarnitine translocase system of heart mitochondria. J. Biol. Chem. 251:6683–6691.PubMedGoogle Scholar
  3. 3.
    Parvin, R., and Pande, S. V. 1979. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocasemediated transport of fatty acids into liver mitochondria under ketogenic conditions. J. Biol. Chem. 254:5423–5429.PubMedGoogle Scholar
  4. 4.
    Shug, A. L., Hayes, B., Huth, P. J., Thomsen, J. H., Bittar, N., Hall, P. V., and Dehling, R. M. 1980. Changes in carnitine-linked metabolism during ischemia, thermal injury and shock. Pages 321–340,in Frenkel, R. A., and McGarry, J. D. (eds.), Carnitine Biosynthesis, Metabolism and Function. Academic Press, New York.Google Scholar
  5. 5.
    Villa, R. F., Gorini, A., Zanada, F., and Benzi, G. 1986. Action ofl-acetylcarnitine on different cerebral mitochondrial populations from hippocampus. Arch. Int. Pharmacodyn 279:195–211.PubMedGoogle Scholar
  6. 6.
    Benzi, G., Gorini, A., Dossena, M., Taglietti, M., Fulle, D., and Pastoris, O. 1983. Recovery after hypoglycemic brain injury. Action of some biological substances on the cerebral metabolism. Biochem. Pharmacol. 32:1083–1091.PubMedGoogle Scholar
  7. 7.
    Benzi, G., Villa, R. F., Dossena, M., Vercesi, L., Gorini, A., and Pastoris, O. 1984. Cerebral endogenous substrate utilization during the recovery period after profound hypoglycemia. J. Neurosci. Res. 11:437–450.PubMedGoogle Scholar
  8. 8.
    Benzi, G., and Giuffrida, A. M. 1985. Bioenergetics of hypoxic brain during aging. Mol. Physiol. 8:535–547.Google Scholar
  9. 9.
    Benzi, G., and Giuffrida, A. M. 1987. Changes of synaptosomal energy metabolism induced by hypoxia during aging. Neurochem. Res. 12:149–157.PubMedGoogle Scholar
  10. 10.
    Christiansen, R. Z. 1978. The effect of clofibrate-feeding on hepatic fatty acid metabolism. Biochim. Biophys. Acta 530:314–324.PubMedGoogle Scholar
  11. 11.
    Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. 1977. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J. Neurochem. 28:625–631.PubMedGoogle Scholar
  12. 12.
    De Robertis, E., de Iraldi, A. P., deL. Arnaiz, G. R., and Salganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain. 1. Isolation and subcellular distribution of acetylcholine and acetylcholine esterase. J. Neurochem. 9:23–35.PubMedGoogle Scholar
  13. 13.
    Whittaker, V. P. 1969. The synaptosome. Pages 327–364,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 2, Plenum Press, New York.Google Scholar
  14. 14.
    Schnaitman, C., and Greenawalt, J. W. 1968. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell. Biol. 38:158–175.PubMedGoogle Scholar
  15. 15.
    Marks, N. 1974. Preparation of brain mitochondrial membranes. Pages 53–77,in Marks, N., and Rodnight, R. (eds.), Methods in Neurochemistry, Vol. 2, Plenum Press, New York.Google Scholar
  16. 16.
    Laemmli, U. K. 1970. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.Google Scholar
  17. 17.
    Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  18. 18.
    Turpeenoja, L., Lähdesmäki, P., Villa, R. F., and Giuffrida, A. M. 1986. Modifications of synaptosomal plasma membrane proteins during aging. p. 223,in Tuček, S., Stipek, S., Stastny, F., and Krivanek, J. (eds.), Molecular Basis of Neural Function. Proceedings of the European Society for Neurochemistry, Prague.Google Scholar
  19. 19.
    Turpeenoja, L., Benzi, G., Villa, R. F., Magri, G,, and Giuffrida-Stella, A. M. 1987. Changes of mitochondrial inner membrane proteins in rat cerebellum during aging. Abstracts of the International Symposium of New Trends in Aging Research Sirmione (Italy) p. 199.Google Scholar
  20. 20.
    Turpeenoja, L., Villa, R. F., Benzi, G., Lahdesmaki, P., and Giuffrida-Stella, A. M. 1987. Changes in cerebellar mitochondrial proteins during aging. (Abstr.) J. Neurochem. 48 (Suppl.):S155.Google Scholar
  21. 21.
    Turpeenoja, L., Villa, R. F., Magri, G., and Giuffrida-Stella, A. M. 1988. Changes in mitochondrial membrane proteins of rat cerebellum during aging. Neurochem. Res. 13:Google Scholar
  22. 22.
    Villa, R. F., Marzatico, F., and Benzi, G. 1983. Changes induced by ischemia on some cerebral enzymatic activities related to energy transduction and amino acid metabolism. Neurochem. Res. 8:269–289.PubMedGoogle Scholar
  23. 23.
    Hansford, R. G. 1983. Bioenergetics in aging. Biochim. Biophys. Acta 726:41–80.PubMedGoogle Scholar
  24. 24.
    Hansford, R. G. 1978. Lipid oxidation by heart mitochondria from young adult and senescent rats. Biochem. J. 170:285–295.PubMedGoogle Scholar
  25. 25.
    Nohl, H., and Kramer, J. 1980. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech. Ageing Dev. 14:137–144.PubMedGoogle Scholar
  26. 26.
    Nohl, H. 1979. Influence of aging on thermotrophic kinetics of enzymes involved in mitochondrial energy-metabolism. Z. Gerontol. 12:9–18.PubMedGoogle Scholar
  27. 27.
    Nohl, H., Breuninger, V., and Hegner, D. 1978. Influence of mitochondrial radical formation on energy-linked respiration. Eur. J. Biochem. 90:385–390.PubMedGoogle Scholar
  28. 28.
    Tedeschi, H. 1981. The transport of cations in mitochondria. Biochim. Biophys. Acta 638:157–196.Google Scholar
  29. 29.
    Vitorica, J., and Satrustegui, J. 1986. Involvement of mitochondria in the age-dependent decrease in calcium uptake of rat brain synaptosomes. Brain. Res. 378:36–48.PubMedGoogle Scholar
  30. 30.
    Giuffrida Stella, A. M., and Lajtha, A. 1987. Macromolecular turnover in brain during aging. Pages 132–144in Lechner, H., Agnoli, A., Benzi, G., Tuček, S., and Giuffrida Stella, A. M. (eds.), Cerebral Metabolism in Aging and Neurological Disorders. Gerontology, Vol. 33, Karger S, Basel.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • R. F. Villa
    • 1
  • L. Turpeenoja
    • 2
  • G. Benzi
    • 1
  • A. M. Giuffrida Stella
    • 3
  1. 1.Institute of Pharmacology, Faculty of ScienceUniversity of PaviaPaviaItaly
  2. 2.Department of BiochemistryUniversity of OuluOuluFinland
  3. 3.Institute of Biochemistry, Faculty of MedicineUniversity of CataniaCataniaItaly

Personalised recommendations