Neurochemical Research

, Volume 13, Issue 9, pp 859–865 | Cite as

Changes of mitochondrial membrane proteins in rat cerebellum during aging

  • L. Turpeenoja
  • R. F. Villa
  • G. Magri
  • A. M. Giuffrida Stella
Original Articles

Abstract

Qualitative and quantitative changes of mitochondrial membrane proteind during aging were investigated. Free (non-synaptic) mitochondria were purified from rat cerebellum at different ages (4, 8, 12, 16, 20, and 24 months). Mitochondrial outer membrane (OM), inner membrane (IM) and matrix (MX) were separated and the proteins were extracted and analyzed by gel-electrophoresis.

After staining, the gels were scanned densitometrically to quantify the proteins. No significant changes in the quantity of OM or MX protein subunits were observed, while serveral statistically significant quantitative changes in IM proteins with age were found. These age-dependent modifications of inner membrane mitochondrial proteins may play an important role in energy transduction, transport systems and regulatory enzymatic activities in mitochondria.

Key Words

Mitochondrial membranes proteins cerebellum aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E. Jr. 1980. Mitochondrial role in cell aging. Exp. Gerontol. 15:575–591.Google Scholar
  2. 2.
    Fleming, J. E., Miquel, J., Cotrell, S. F., Yenogoyan, I. S., and Economos, A. C. 1982. Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28:44–53.Google Scholar
  3. 3.
    Vorbeck, M., Martin, A. P., Lang, J. W. J., Smith, J. M., Orr, R., Jr., 1982. Aging dependent modification of lipid composition and lipid structural order parameter of hepatic mitochondria. Arch. Biochem. Biophys. 277:351–361.Google Scholar
  4. 4.
    Abu-Erreish, C. M., and Sanadi, D. R. 1978. Age-related changes in cytochrome concentration of myocardial mitochondria. Mech. Ageing Devel. 7:425–432.Google Scholar
  5. 5.
    Starnes, J. W., Beyer, R. W., and Edington, D. W. 1983. Myocardial adaptations to endurance exercise in aged rats. Am. J. Physiol. 245:4560–4566.Google Scholar
  6. 6.
    Starnes, J. W., Edington, D. W., and Beyer, R. E. 1983. Myocardial protein synthesis during aging and endurance exercise in rats. J. Gerontol. 33:802–810.Google Scholar
  7. 7.
    Benzi, G., and Giuffrida, A. M. 1987. Changes of synaptosomal energy metabolism induced by hypoxia during aging. Neurochem. Res. 12:149–157.Google Scholar
  8. 8.
    Benzi, G., Arrigoni, E., Dagani, F., Marzatico, M., Curti, D., Raimondo, S., Dossena, M., Polzatti, M., and Villa, R. F. 1980. Age-dependent modifications of drug interference on the enzymatic activities of the rat brain. Exp. Gerontol. 15:593–603.Google Scholar
  9. 9.
    Hansford, R. G. 1983. Bioenergetics in aging. Biochim. Biophys. Acta 726:41–80.Google Scholar
  10. 10.
    Nohl, H., and Kramer, J. 1980. Molecular basis of age-dependent changes in the activity of adenine-nucleotide translocase. Mech. Ageing Devel. 14:137–144.Google Scholar
  11. 11.
    Hansford, R. G., and Castro, F. 1982. Effect of senescence on Ca2+-ion by heart mitochondria. Mech. Ageing Devel. 19:5–13.Google Scholar
  12. 12.
    Vitorica, J., Clark, A., Machado, A., and Satrestegui, J. 1985. Impairment of glutamate uptake and absence of alterations in the energy transducing ability of old rat brain mitochondria. Mech. Ageing Devel. 29:255–266.Google Scholar
  13. 13.
    Miquel, J., and Fleming, J. 1986. Theoretical and experimental support for an “Oxygen radical-Mitochondrial Injury” hypothesis of cell aging, Pages 51–74,in Johnson, J. E., Walford, R., Harman, D., and Miquel, J. (eds.), Free radicals, aging, and degenerative diseases. Vol. 8, Modern Aging Research, Alan Liss, Inc., New York.Google Scholar
  14. 14.
    De Robertis, E., de Iraldi, A. P., deL. Arnaiz, G. R., and Salganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain. 1. Isolation and subcellular distribution of acetylcholine and acetylcholine esterase. J. Neurochem. 9:23–35.Google Scholar
  15. 15.
    Whittaker, V. P. 1969. The synaptosome,in Lajtha, A. (ed.) Pages 327–364. Handbook of Neurochemistry, Vol. 2, Plenum Press, New York.Google Scholar
  16. 16.
    Schnaitman, C., and Greenwalt, J. W. 1968. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell. Biol. 38:158–175.Google Scholar
  17. 17.
    Marks, N. 1974. Preparation of brain mitochondrial membranes, Pages 53–77,in Marks, N., and Rodnight, R. (eds.), Methods in Neurochemistry, Vol. 2, Plenum Press, New York.Google Scholar
  18. 18.
    Laemmli, U. K. 1970. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.Google Scholar
  19. 19.
    Lowry, O. M., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  20. 20.
    De Pierre, J. W., and Ernster, L. 1977. Enzyme topology of intracellular membranes, Pages 207–230,in Snell, E. E., Boyer, P. D., Meister, A., and Richardson, C. C. (eds.), Annual Review of Biochemistry, Vol 46, Annul Reviews Inc., Palo Alto, California.Google Scholar
  21. 21.
    Dunn, A. J., and Bondy, S. C. 1974. Functional brain chemistry. Page 39, John Wiley & Sons, New York.Google Scholar
  22. 22.
    Massie, H. R., Baird, M. B., and McMahon, M. M. 1975. Loss of mitochondrial DNA with aging. Gerontology 21:231–237.Google Scholar
  23. 23.
    Giuffrida Stella, A. M. 1983. Nucleic acids in developing brain, Pages 227–250,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol 5, Plenum Press, New York.Google Scholar
  24. 24.
    Bailey, P. J., and Webster, G. C. 1984. Lowered rate of protein synthesis by mitochondria isolated from organisms of increasing age. Mech. Ageing Devel. 24:233–241.Google Scholar
  25. 25.
    Nohl, H., Breuninger, V., and Hegner, D. 1978. Influence of mitochondrial radical formation on energy-linked respiration. Eur. J. Biochem. 90:385–390.Google Scholar
  26. 26.
    Marcus, D. L., Ibrahim, N. G., and Fredman, M. I. 1982. Age related decline in the biosynthesis of mitochondrial inner membrane proteins. Exp. Gerontol. 17:333–341.Google Scholar
  27. 27.
    Fleming, J. E., Melnikoff, P. S., and Bensch, K. G. 1984. Identification of mitochondrial proteins on two dimensional electrophoretic gels of adult Drosophila melanogaster. Biochim. Biophys. Acta 802:340–345.Google Scholar
  28. 28.
    Fleming, J. E., Melnikoff, P. S., Latter, G. I., Chandia, D., and Bensch, K. G. 1986. Age-dependent changes in the expression of Drosophila mitochondrial proteins. Mech. Ageing Devel. 34:63–72.Google Scholar
  29. 29.
    Giuffrida Stella, A. M., and Lajtha, A. 1987. Macromolecular turnover in brain during aging. Pages 132–144,in Lechner, H., Agnoli, A., Benzi, G., Tuček, S., Giuffrida Stella, A. M. (eds.), Cerebral Metabolism in Aging and Neurological Disorders, Gerontology, Vol. 33, Karger, S., Basel.Google Scholar
  30. 30.
    Avola, R., Condorelli, D. F., Ragusa, N., Renis, M., Alberghina, M., and Giuffrida Stella, A. M. 1988. Rate of protein synthesis in various brain regions and subcellular fractions during aging. Neurochem. Res. 13:337–342.Google Scholar
  31. 31.
    Bradley, M. O., Hayflick, L., and Schumke, R. T. 1976. Protein degradation in human fibroblasts (WI38). Effects of ageing, viral transformation and amino acid analogs. J. Biol. Chem. 251:3521–3529.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • L. Turpeenoja
    • 1
  • R. F. Villa
    • 2
  • G. Magri
    • 1
  • A. M. Giuffrida Stella
    • 1
  1. 1.Institute of Biochemistry, Faculty of MedicineUniversity of CataniaCataniaItaly
  2. 2.Institute of Pharmacology, Department of ScienceUniversity of PaviaItaly

Personalised recommendations