Skip to main content
Log in

Sodium and potassium uptake in primary cultures of proliferating rat astroglial cells induced by short-term exposure to an astroglial growth factor

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Primary cultures of rat astroglial cells were maintained in a serum-free medium. After 8–10 days of cultivation the cells were exposed to an astroglial growth factor (AGF2) for short periods (1–120 min). Subsequently, uptake of22Na+ and42K+ into control and AGF2-pretreated cells was studied. Assay of the Na+ and K+ values in the cells was also performed by atomic absorption spectrometry. Treatment of rat astroglial cells with AGF2 resulted in a significant increase of the uptake of both Na+ and K+ depending on the duration of the exposure period. To reach the maximum increase of cation uptake, 6–10 min and 30 min of AGF2 pretreatment were needed for Na+ and K+, respectively. Amiloride blocked this increase of Na+ and K+ uptake elicited by AGF2 pretreatment, but the control cells were amiloride resistant. Treatment with AGF2 increased the ouabain sensitivity of the K+ uptake as that: 10−4 M ouabain inhibited K+ uptake of the AGF2-treated cells to the same degree as 5×10−3 M ouabain with the control cells. The Na+ uptake of AGF2-treated cells, however, exhibited no relevant changes in the presence of ouabain. A significant part of the AGF2-induced K+ uptake could be inhibited by both ouabain and amiloride, but a ouabain-resistant and amiloride-sensitive component also was revealed. The furosemide sensitivity of both Na+ and K+ uptake into cultured astroglial cells was also significantly increased by AGF2. Our findings suggest that short-term exposure of cultured glial cells to AGF2 induces these very early ionic events: 1) The appearance of a relevant amiloride-sensitive Na+/H+ exchange, and as a consequence of increased Na+ entry into the cells, secondary activation of the ouabain-sensitive K+ uptake via the Na+,K+-pump. 2) A direct effect of AGF2 on the Na+,K+-pump assembly in the membrane, resulting in increased Na+ sensitivity of the inner pump sites and enhanced ouabain sensitivity of the external K+-binding sites. 3) An increase of ouabain-resistant but amiloride- or furosemide-sensitive Na+ and K+ uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sensenbrenner, M., Pettmann, B., Labourdette, G., and Weibel, M. 1985. Properties of a brain growth factor promoting proliferation and maturation of rat astroglial cells in culture. Pages 345–360,in Dumont, J. E., Hamprecht, B., and Nunez, J. (eds.), Hormones and Cell Regulation, INSERM European Symposium, Elsevier Science Publishers B. V., Biomedical Division.

  2. Pettmann, B., Labourdette, G., Weibel, M., and Sensenbrenner, M. 1985. Brain-derived astroglial growth factors. Funkt. Biol. Med. 4:243–248.

    Google Scholar 

  3. Sensenbrenner, M., Labourdette, G., Delaunoy, J. P., Pettmann, B., Devilliers, G., Moonen, G., and Bock, E. 1980. Morphological and biochemical differentiation of glial cells in primary culture. Pages 385–395,in Giacobini, E., Vernadakis, A., and Shahar, A. (eds.), Tissue Culture in Neurobiology, Raven Press, New York.

    Google Scholar 

  4. Lemke, G. E., and Brockes, J. P. 1984. Identification and purification of glial growth factor. J. Neurosci. 4:75–83.

    Google Scholar 

  5. Lim, R., Turriff, D. E., Troy, S. S., and Kato, T. 1977. Differentiation of glioblasts under the influence of glia maturation factor,in Fedoroff, S., and Hertz, L. (eds.), Cell, Tissue and Cultures in Neurobiology, Academic Press, New York.

    Google Scholar 

  6. Pettmann, B., Labourdette, G., Devilliers, G., and Sensenbrenner, M. 1981. Effects of brain extracts from chick embryo on the development of astroblast in culture. Dev. Neurosci. 4:37–45.

    Google Scholar 

  7. Pettmann, B., Weibel, M., Daune, G., Sensenbrenner, M., and Labourdette, G. 1982. Stimulation of proliferation and maturation of rat astroblast in serum-free culture by an astroglial growth factor. J. Neurosci. Res. 8:463–476.

    Google Scholar 

  8. Weibel, M., Pettmann, B., Labourdette, G., Miehe, E., Bock, E., and Sensenbrenner, M. 1985. Morphological and biochemical maturation of rat astroglial cells grown in a chemically defined medium influences of an astroglial growth factor. Int. J. Dev. Neurosci. 3:617–630.

    Google Scholar 

  9. Pettmann, B., Weibel, M., Sensenbrenner, M., and Labourdette, G. 1985. Purification of two astroglial growth factors from bovine brain. FEBS Lett. 189:102–108.

    Google Scholar 

  10. Pettmann, B., Labourdette, G., Weibel, M., and Sensenbrenner, M. 1986. The brain fibroblast growth factor (FGF) is localized in neurons. Neurosci. Letters 68:175–180.

    Google Scholar 

  11. de Laat, S. W., Moolenaar, W. H., Defize, L. H. K., Boonstra, J., and van der Saag, P. T. 1985. Signal transduction by polypeptide growth factor receptors. Pages 269–288,in Dumont, J. E., Hamprecht, B., and Nunez, J. (eds.), Hormones and Cell Regulation, INSERM European Symposium, Elsevier, Science Publishers B.V. (Biomedical Division).

  12. Rozengurt, E., and Mendoza, S. A. 1985. Synergistic signals in mitogenesis: role of ion fluxes, cyclic nucleotides and protein kinase C in swiss 3T3 cells. Pages 229–242,in Hopkins C. R., and Hughes, R. C. (eds.), Growth Factors: Structure and Function, Supplement 3, J. Cell. Sci., Company of Biologists Limited, Cambridge.

    Google Scholar 

  13. Jean, T., Frelin, C., Vigne, P., and Lazdunski, M. 1986. The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur. J. Biochem. 160:211–219.

    Google Scholar 

  14. Frelin, C., Vigne, P. and Lazdunski, M. 1985. The Na+/H+ exchange system. Properties and role in cell function. Pages 259–268,in Dumont, J. E., Hamprecht, B., and Nunez, J. (eds.), Hormones and Cell Regulation, INSERM European Symposium, Elsevier Science Publishers B.V. (Biomedical Division).

  15. Moolenar, W. H., Defize, L. H. K., and de Laat, S. W. 1986. Ionic signalling by growth factor receptors. J. Exp. Biol. 124:359–373.

    Google Scholar 

  16. Leffert, H. L., and Koch, K. S. 1985. Growth regulation by sodium ion fluxes. Pages 367–413,in Boynton, A. L., and Leffert, H. L. (eds.), Control of Animal Cell Proliferation, Vol. 1, Academic Press, New York.

    Google Scholar 

  17. Chandler, Ch. C., Cragoe, E. J., Jr., and Glaser, L. 1985. Nerve growth factor does not activate Na+/H+ exchange in PC12 pheocromocytoma cells. J. Cell. Physiol. 125:367–368.

    Google Scholar 

  18. Boonstra, J., Moolenaar, W. H., Harrison, P. H., Moed, P., van der Saag, P. T., and de Laat, S. W. 1983. Ionic responses and growth stimulation induced by nerve growth factor and epidermal growth factor in rat pheochromocytoma (PC12) cells. J. Cell Biol. 97:92–98.

    Google Scholar 

  19. Besterman, J. M., Tyrey, S. J., Cragoe, E. J., Jr., and Cuatrecasas, P. 1984. Inhibition of epidermal growth factor-induced mitogenesis by amiloride and an analog: evidence against a requirement for Na+/H+ exchange. Proc. Natl. Acad. Sci. USA 81:6762–6766.

    Google Scholar 

  20. Pouyssegur, J., Franchi, A., L'Allemain, G., and Paris, S. 1985. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett. 190:115–119.

    Google Scholar 

  21. Smith, J. B., and Rozengurt, E. 1978. Serum stimulates the Na+/K+-pump in quiescent fibroblasts by increasing Na+ entry. Proc. Natl. Acad. Sci. USA 75:5560–5564.

    Google Scholar 

  22. Mendoza, S. A., Wigglesworth, N. M., Pirkko, P., and Rozengurt, E. 1980. Na+ entry and Na+,K+-pump activity in murine, hamster and human cells—effect of monensin, serum, platelet extract, and viral transformation. J. Cell. Comp. Physiol. 103:17–27.

    Google Scholar 

  23. Moolenaar, W. H., Mummery, C. L., van der Saag, P. T., and de Laat, S. W. 1981. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell 23:789–798.

    Google Scholar 

  24. Mitsumoto, Y., and Mohri, T. 1986. Leucine transport in relation to the activities of Na+−H+ antiporter and Na+,K+-pump stimulated by serum and a tumor promoter. Biochim. Biophys. Acta 861:187–193.

    Google Scholar 

  25. Boonstra, J., Skaper, S. D., and Varon, S. 1982. Regulation of Na+, K+-pump activity by nerve growth factor in chick embryo dorsal root ganglion cells. J. Cell. Physiol. 113:28–34.

    Google Scholar 

  26. Skaper, S. D., and Varon, S. 1983. Control of the Na+,K+-pump by nerve growth factor is essential to neuronal survival. Brain Res. 271:263–271.

    Google Scholar 

  27. Panet, R., Amir, I., and Atlan, H. 1986. Fibroblast growth factor induces a transient net K+ influx carried by the bumetanide-sensitive transporter in quiscent BALB/C 3T3 fibroblasts. Biochim. Biophys. Acta 859:117–121.

    Google Scholar 

  28. Kimelberg, H. K., Biddlecome, S., and bourke, R. S. 1979. SITS-inhibitable Cl transport and Na+-dependent H+ production in primary astroglial cultures. Brain Res. 173:111–124.

    Google Scholar 

  29. Benos, D. J., and Sapirstein, V. S. 1983. Characteristics of an amiloride-sensitive sodium entry pathway in cultured rodent glial and neuroblastoma cells. J. Cell. Physiol. 116: 213–220.

    Google Scholar 

  30. Sapirstein, V. S., and Benos, D. J. 1984. Activation of amiloride-sensitive sodium transport in C6 glioma cells. J. Neurochem. 43:1098–1105.

    Google Scholar 

  31. Johnson, J. H., Dunn, D. P., and Rosenberg, R. N. 1982. Furosemide-sensitive K+ channel in glial cells but not neuroblastoma cells in culture. Biochem. Res. Commun. 109:100–115.

    Google Scholar 

  32. Kimelberg, H. K., and Frangakis, M. V. 1985. Furosemide-and bumetanid-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361:125–134.

    Google Scholar 

  33. Weibel, M., Pettmann, B., Daune, G., Labourdette, G., and Sensenbrenner, M. 1984. Chemically defined medium for rat astroglial cells in primary culture. Int. J. Devl. Neurosci. 2:355–366.

    Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  35. Walz, W., and Hertz, L. 1983. Intracellular ion changes of astrocytes in response to extracellular potassium. J. Neurosci. Res. 10:411–423.

    Google Scholar 

  36. Walz, W., and Hertz, L. 1984. Sodium transport in astrocytes. J. Neurosci. Res. 11:231–239.

    Google Scholar 

  37. Rindler, M. J., Taub, M., and Saier, M. H., Jr. 1979. Uptake of22Na+ by cultured dog kidney cells (MDCK). J. Biol. Chem. 254:11431–11439.

    Google Scholar 

  38. Paris, S., and Pouyssegur, J. 1983. Biochemical characterization of the amiloride-sensitive Na+/H+ antiport in chinese hamster lung fibroblasts. J. Biol. Chem. 258:3503–3508.

    Google Scholar 

  39. Vigne, P., Frelin, C., and Lazdunski, M. 1985. The Na+/H+ antiport is activated by serum and phorbol esters in proliferating myoblasts but not in differentiated myotubes. J. Biol. Chem. 260:8008–8013.

    Google Scholar 

  40. Latzkovits, L., Sensenbrenner, M., and Mandel, P. 1974. Tracer kinetic model analysis of potassium uptake by dissociated nerve cell cultures: glial-neuronal interrelationship. J. Neurochem. 23:193–200.

    Google Scholar 

  41. Latzkovits, L., Rimanoczy, A., Juhasz, A., Torday, Cs., and Sensenbrenner, M. 1982. Control of cation transport in cultured glial cells by external Ca++: a possible signal in glial-neuronal interaction. Dev. Neurosci. 5:92–100.

    Google Scholar 

  42. Latzkovits, L., and Fajszi, Cs. 1982. Cation transport. Pages 1–30,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 1, Plenum Press, New York.

    Google Scholar 

  43. Latzkovits, L. 1978. Neuronal-glial interactions in potassium transport. Pages 327–336,in Schoffeniels, E., Franck, G., Hertz, L., and Tower, D. B. (eds.), Dynamic Properties of Glia Cells, Pergamon Press, Oxford.

    Google Scholar 

  44. Walz, W., and Kimelberg, H. K. 1985. Differences in cation transport properties of primary astrocyte cultures from mouse and rat brain. Brain Res. 340:333–340.

    Google Scholar 

  45. Reuss, L., Lewis, S. A., Wills, N. K., Helman, S. I., Cox, T. C., boron, W. F., Siebens, A. W., Guggino, W. E., Giebisch, G., and Schultz, S. 1984. Ion transport processes in basolateral membranes of epithelia. Fed. Proc. 43:2488–2502.

    Google Scholar 

  46. Akera, T., Larsen, F. S., and Brody, T. M. 1969. The effect of ouabain on sodium and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J. Pharmacol. Exper. Ther. 170:17–26.

    Google Scholar 

  47. Sperelakis, N. 1972. (Na+,K+)-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochim. Biophys. Acta 266:230–237.

    Google Scholar 

  48. Walz, W., and Hertz, L. 1982. Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J. Neurochem. 39:70–77.

    Google Scholar 

  49. Szamel, M., and Resch, K. 1981. Inhibition of lymphocyte activation by ouabain-interference with the early activiation of membrane phospholipid metabolism. Biochim. Biophys. Acta 647:297–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latzkovits, L., Torday, C., Labourdette, G. et al. Sodium and potassium uptake in primary cultures of proliferating rat astroglial cells induced by short-term exposure to an astroglial growth factor. Neurochem Res 13, 837–848 (1988). https://doi.org/10.1007/BF00970751

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970751

Key Words

Navigation