Skip to main content
Log in

Interactions between prostaglandin E2 andd-ala2-met-enkephalinamide on adenylate cyclase activity in the guinea-pig superior cervical ganglion

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Crude membrane fractions, obtained from superior cervical ganglia of normal and sympathectomized guinea-pigs, have been used to investigate the role of prostaglandin E2 andd-ala2-met-enkephalinamide in the modulation of ganglionic adenylate cyclase as well as their functional interrelationship. In ganglia from normal animals the enzyme activity was stimulated and inhibited, respectively, by the prostaglandin (10−4M) and by the opiate pentapeptide (10−4M), while little or no effects were observed in denervated preparations. When the two substances were tested in combination, a supra-additive stimulation of adenylate cyclase activity was obtained both in normal and denervated ganglia. In the latter preparation the opiate increased prostaglandin E2 specific binding, suggesting that the mechanism of supra-additivity could involve interactions at receptors level. Furthermore, the supra-additive stimulation of adenylate cyclase activity by the combination of the two drugs was obtained in a narrow range of concentrations since at low prostaglandin E2 doses (10−7–10−6M) or at very high doses of the opiate (10−3M), only the inhibitory effect ofd-ala2-met-enkephalinamide was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmer, J. M., Wood, J. D., and Zafirov, D. H. 1987. Purinergic inhibition in the small intestinal myenteric plexus of the guinea-pig. J. Physiol. 387:357–369.

    Google Scholar 

  2. Byrne, J. H. 1985. Neural and molecular mechanisms underlying information storage in Aplysia: implications for learning and memory. Trends NeuroSci. 89:478–482.

    Google Scholar 

  3. Fischermeister, R., and Hartzell, H. C. 1986. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. 376:183–202.

    Google Scholar 

  4. Parker, I., Ito, Y., Kuriyama, H., and Miledi, R. 1987. β-adrenergic agonists and cyclic AMP decrease intracellular resting free-calcium concentration in ileum smooth muscle. Proc. R. Soc. Lond. B230:207–214.

    Google Scholar 

  5. Borasio, P. G., Ferretti, M. E., Biondi, C., and Trevisani, A. 1982. cAMP-dependent and cAMP-independent modulation of synaptic transmission in guinea-pig superior cervical ganglion. Neurosci. Lett. 32:197–201.

    Google Scholar 

  6. Dun, N., and Karczmar, A. G. 1977. The presynaptic site of action of norepinephrine in the superior cervical ganglion of guinea-pig. J. Pharmacol. Exp. Ther. 200:328–335.

    Google Scholar 

  7. Belluzzi, O., Simpatico, T. A., and Perri, V. 1982. Studio della liberazione di acetilcolina nel ganglio cervicale superiore di cavia mediante uso di colina tritiata. Boll. Soc. It. Biol. Sper. 58:1570–1576.

    Google Scholar 

  8. Borasio, P. G., Biondi, C., Capuzzo, A., and Ferretti, M. E. 1986. Opiates modulation of cAMP levels and PGE2 binding in mammalian sympathetic ganglia. Neurosci. Lett. 66:7–12.

    Google Scholar 

  9. Capuzzo, A., Biondi, C., Borasio, P. G., Ferretti, M. E., and Fabbri, E. 1986. Some properties of adenosine 3′,5′-cyclic monophosphate phosphodiesterase in the superior cervical ganglion of the guinea-pig. Neurochem. Res. 11:1425–1437.

    Google Scholar 

  10. Raisman, G., Field, P. M., Ostberg, A. J. C., Iversen, L. L., and Zigmond, R. E. 1974. A quantitative ultrastructural and biochemical analysis of the process of reinnervation of the superior cervical ganglion in the adult rat. Brain Res. 71:1–16.

    Google Scholar 

  11. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P. 1974. Characterization of a dopamine-sensitive adenyl cyclase in rat caudate nucleus. J. Neurochem. 25:143–149.

    Google Scholar 

  12. Brown, B. L., Ekins, R. P., and Albano, J. D. M. 1972. Saturation assay for cyclic AMP using endogenous binding protein. Pages 25–40,in Greengard, P., Robison, G., and Paoletti, R. (eds.), Adv. Cyclic Nucleotide Res., Vol. 2, Raven Press, New York.

    Google Scholar 

  13. Tomasi, V., Biondi, C., Trevisani, A., Martini, M., and Perri, V. 1977. Modulation of cyclic AMP levels in the bovine superior cervical ganglion by prostaglandin E1 and dopamine. J. Neurochem. 28:1289–1297.

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  15. Kazmi, S. M., and Mishra, R. K. 1987. Comparative pharmacological properties and functional coupling of μ and δ opioid receptor sites in human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 32:109–118.

    Google Scholar 

  16. Rougon, G., Noble, M., and Mudge, A. W. 1983. Neuropeptides modulate the β-adrenergic response of purified astrocytes in vitro. Nature 305:715–717.

    Google Scholar 

  17. Cooper, D. M. F., Londos, C., Gill, D. L., and Rodbell, M. 1982. Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J. Neurochem. 38:1164–1167.

    Google Scholar 

  18. Sonnefeld, K. H., Mishra, R., Mullikin-Kilpatrick, D., and Blume, A. J. 1984. Evidence for the presence of specific binding sites ford-ala2-met5-enkephalinamide and opiate-sensitive adenylate cyclase on human neuroblastoma (SH-SY5Y) cells. Pages 208–210,in First Colloquium in Biological Sciences, Vol. 435, Annals of the New York Academy of Sciences.

  19. Konishi, S., Tsunoo, A., and Otsuka, M. 1979. Enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia. Nature 282:515–516.

    Google Scholar 

  20. Rodbell, M. 1987. Role of GTP-binding proteins in hormone and drug action: adenylate cyclase and other transduction processes. Drug Develop. Res. 10:195–204.

    Google Scholar 

  21. Arima, T., Segawa, T., and Nomura, Y. 1986. Influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase in rat striatal membranes. Life Sci., 39:2429–2434.

    Google Scholar 

  22. Mizobe, F., Kozousek, V., Dean, D. M., and Livett, B. G. 1979. Pharmacological characterization of adrenal paraneurons: substance P and somatostatin as inhibitory modulators of the nicotinic response. Brain Res. 178:555–566.

    Google Scholar 

  23. Role, L. W., Leemán, S. E., and Perlman, R. L. 1981. Somatostatin and substance P inhibit catecholamine secretion from isolated cells of guinea-pig adrenal medulla. Neuroscience 6:1813–1821.

    Google Scholar 

  24. Lundberg, J. M., Hedlund, B., and Bartfai, T. 1982. Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature 295:147–149.

    Google Scholar 

  25. Magistretti, P. J., Hof, P., and Schorderet, M. 1984. The increase in cyclic-AMP levels elicited by vasoactive intestinal peptide (VIP) in mouse cerebral cortical slices is potentiated by ergot alkaloids. Neurochem. Int. 6:751–753.

    Google Scholar 

  26. Schaad, N. C., Schorderet, M., and Magistretti, P. J. 1987. Prostaglandins and the synergism between VIP and noradrenaline in the cerebral cortex. Nature 328:637–640.

    Google Scholar 

  27. Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., and Besch, H. R. Jr. 1978. Muscarinic cholinergic receptor modulation of β-adrenergic receptor affinity for catecholamines. J. Biol. Chem. 253:4833–4836.

    Google Scholar 

  28. Sugden, D., Vanecek, J., Klein, D. C., Thomas, T. P., and Anderson, W. B. 1985. Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314:359–361.

    Google Scholar 

  29. Lundberg, J. M., and Hökfelt, T. 1983. Coexistence of peptides and classical neurotransmitters. Trends NeuroSci. 6:325–333.

    Google Scholar 

  30. Kondo, H., Kuramoto, H., Wainer, B. H., and Yanaihara, N. 1985. Evidence for the coexistence of acetylcholine and enkephalin in the sympathetic preganglionic neurons of rats. Brain Res. 335:309–314.

    Google Scholar 

  31. Matsuyama, T., Wanaka, A., Kanagawa, Y., Yoneda, S., Kimura, K., Hayakawa, T., Kamada, T., and Tohyama, M. 1987. Two discrete enkephalinergic neuron systems in the superior cervical ganglion of the guinea pig: an immunoelectron microscopic study. Brain Res. 418:325–333.

    Google Scholar 

  32. Webb, J. G., Saelens, D. A., and Halushka, P. V. 1978. Biosynthesis of prostaglandin E by rat superior cervical ganglia. J. Neurochem. 31:13–19.

    Google Scholar 

  33. Trevisani, A., Biondi, C., Belluzzi, O., Borasio, P. G., Capuzzo, A., Ferretti, M. E., and Perri, V. 1982. Evidence for increased release of prostaglandins of E-type in response to orthodromic stimulation in the guinea-pig superior cervical ganglion. Brain Res. 236:375–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferretti, M.E., Borasio, P.G., Biondi, C. et al. Interactions between prostaglandin E2 andd-ala2-met-enkephalinamide on adenylate cyclase activity in the guinea-pig superior cervical ganglion. Neurochem Res 13, 797–802 (1988). https://doi.org/10.1007/BF00970745

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970745

Key Words

Navigation