Lithuanian Mathematical Journal

, Volume 19, Issue 4, pp 546–551 | Cite as

Control functions in discrete-time optimal control systems

  • P. Rupšys


Control System Control Function Optimal Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. Wong, “An approach to reducing the computing time for dynamic programming,” Operat. Res.,18, No. 1, 181–185 (1970).Google Scholar
  2. 2.
    P. Rupšys, “Dynamic programming method for deterministic discrete-time processes of general form,” Litov. Mat. Sb.,18, No. 4, 121–127 (1978).Google Scholar
  3. 3.
    C. Berge, Espaces Topologiques et Fonctions Multivoques, Dunod, Paris (1959).Google Scholar
  4. 4.
    K. Kuratowski, Topology, Vol. 1, Academic Press (1966).Google Scholar
  5. 5.
    V. I. Glivenko, “Sur les fonctions representables implicitement par fonctions continues,” Fund. Math.,14, 252–265 (1929).Google Scholar
  6. 6.
    E. B. Kolesova, “Theory of implicit functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,18, No. 5, 461–476 (1954).Google Scholar
  7. 7.
    K. Kuratowski, Topology, Vol. 2, Academic Press (1969).Google Scholar
  8. 8.
    R. Engelking, “Selectors of the first Baire class for semicontinuous set-valued functions,” Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys.,16, No. 4, 277–282 (1968).Google Scholar
  9. 9.
    K. Lau, “A note on lower semicontinuous set-valued maps,” Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys.,24, No. 4, 271–275 (1976).Google Scholar
  10. 10.
    A. A. Tolstonogov, “Topological structure of continuous multiple-valued mappings,” Sib. Mat. Zh.,16, No. 4, 839–852 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • P. Rupšys

There are no affiliations available

Personalised recommendations