Siberian Mathematical Journal

, Volume 31, Issue 4, pp 638–648 | Cite as

Continuation of multivalued functions with discrete singularities

  • T. T. Tuichiev


Multivalued Function Discrete Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, The M. I. T. Press, Cambridge, Mass. (1966).Google Scholar
  2. 2.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Parts 1 and 2, 3rd edn., Nauka, Moscow (1985).Google Scholar
  3. 3.
    M. V. Kazaryan, “On holomorphic continuation of functions with special singularities in C",” Dokl. Akad. Nauk ArmSSR,76, No. 1, 13–17 (1983).Google Scholar
  4. 4.
    A. Sadullaev and E. M. Chirka, “On the continuation of functions with polar singularities,” Mat. Sb.,132, (174), No. 3, 383–390 (1987).Google Scholar
  5. 5.
    T. T. Tuichiev, “Singularities of functions with respect to a direction and to a set,” Dokl. Akad. Nauk UzSSR, No. 12, 3–4 (1986).Google Scholar
  6. 6.
    T. T. Tuichiev, “Continuation of functions along a fixed direction,” Sib. Mat. Zh.,29, No. 3, 142–147 (1988).Google Scholar
  7. 7.
    E. M. Chirka, “Series expansions and the rate of rational approximations for holomorphic functions with analytic singularities,” Mat. Sb.,93, (135), No. 2, 314–324 (1974).Google Scholar
  8. 8.
    E. M. Chirka, “Rational approximation of holomorphic functions with singularities of finite order,” Mat. Sb.,100, (142), NO. 1, 137–155 (1976).Google Scholar
  9. 9.
    A. Sadullaev, “Plurisubharmonic functions,” Sovrem. Probl. Mat., Fundam. Napravl.,8, 65–113 (1985).Google Scholar
  10. 10.
    A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds,” Usp. Mat. Nauk,36, No. 4, 53–105 (1981).Google Scholar
  11. 11.
    P. Lelong, “Ensembles singuliers impropres des fonctions plurisousharmoniques,” J. Math. Pures Appl,36, 263–303 (1957).Google Scholar
  12. 12.
    K. Oka, “Note sur les familles de fonctions analytiques multiformes, etc.,” J. Sci. Hiroshima Univ.,A4, 93–98 (1934).Google Scholar
  13. 13.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Am. Math. Soc., Providence (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • T. T. Tuichiev

There are no affiliations available

Personalised recommendations