Neurochemical Research

, Volume 20, Issue 12, pp 1503–1510 | Cite as

Inhibition of MAO-B by (−)-deprenyl alters dopamine metabolism in the macaque (Macaca facicularis) brain

  • I. A. Paterson
  • B. A. Davis
  • D. A. Durden
  • A. V. Juorio
  • P. H. Yu
  • G. Ivy
  • W. Milgram
  • A. Mendonca
  • P. Wu
  • A. A. Boulton
Original Articles

Abstract

The present study has examined whether MAO-B has a role in DA metabolism in the primate CNS in situ. Eleven macaques (macaca facicularis) were used in this study to examine the effects of (-)-deprenyl (1 mg/kg, i.v., 2 and 24 hours). (-)-Deprenyl administration completely and selectively blocked MAO-B activity and blocked DA metabolism in the caudate nucleus and frontal cortex. DA metabolism in the substantia nigra was not affected by MAO-B inhibition. Changes in DA metabolism were accompanied by changes in 5-hydroxytryptamine (5HT) turnover: 5-hydroxyindole acetic acid (5HIAA) levels increased in the caudate and decreased in the frontal cortex. Levels of 2-phenylethylamine (PE), a putative modulator of dopaminergic transmission, were increased by MAO-B inhibition in all three brain regions examined. It is concluded that in some regions of the primate brain, in contrast to the rat, MAO-B has an important role in DA metabolism.

Key Words

Monoamine oxidase dopamine phenylethylamine primate brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marsden, C. D. 1990. Parkinson's disease. Lancet 335:948–952.Google Scholar
  2. 2.
    Fowler, C. J., O'Carroll, A.-M., and Tipton, K. F. 1984. Deamination of dopamine by monoamine oxidase-A and-B in the rat and in man. Pages 393–402,in K. F. Tipton, P. Dostert, and M. Strolin Benedetti, (eds.) Monoamine oxidase and disease: prospects for therapy with reversible inhibitors, Academic Press Inc.: London.Google Scholar
  3. 3.
    Garrick, N. A., and Murphy, D. L. 1980. Species differences in the deamination of dopamine and other substrates for monamine oxidase in brain. Psychopharmacology 72:27–33.Google Scholar
  4. 4.
    Fowler, C. J., Oreland, L., Marcusson, J., and Winblad, B. 1980. Titration of human brain monoamine oxidase-A and-B by clorgyline and 1-deprenyl. Naunyn-Schmeideberg's Archives of Pharmacology 311:263–272.Google Scholar
  5. 5.
    Major, L. F., Murphy, D. L., Lipper, S., and Gordon, E. 1979. Effects of clorgyline and pargyline on deaminated metabolites of norepinephrine, dopamine and serotonin in human cerebrospinal fluid. J. Neurochem. 32:229–231.Google Scholar
  6. 6.
    Raichi, N., and Harik, S. 1992. Monoamine oxidases of the brains and livers of macaque and cercopithecus monkeys. Experimental Neurology 115:212–217.Google Scholar
  7. 7.
    Saura, J., Kettler, R., Da Prada, M., and Richards, J. G. 1992. Quantitative enzyme autoradiography with3H-Ro 41-1049 and3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J. Neurosci. 12:1977–1999.Google Scholar
  8. 8.
    Youdim, M. H. and Finberg, J. P. M. 1991. New directions in monoamine oxidase A and B: selective inhibitors and substrates. Biochemical Pharmacology 41:155–162.Google Scholar
  9. 9.
    Berry, M. D., Juorio, A. V., and Paterson, I. A. 1994. The functional role of monoamine oxidases A and B in the mammalian central nervous system. Prog. Neurobiol 42:375–391.Google Scholar
  10. 10.
    Arai, R., Kimura, H., and Maeda, T. 1986. Topographic atlas of monoamine oxidase-containing neurons in the rat brain studied by an improved histochemical method. Neuroscience 19:905–925.Google Scholar
  11. 11.
    Konradi, C., Svoma, E., Jellinger, K., Riederer, P., Denney, R., and Thibault, J. 1988. Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 26: 791–802.Google Scholar
  12. 12.
    Konradi, C., Kornhuber, J., Froelich, L., Fritze, J., Heinsen, H., Beckmann, H., Schulz, E., and Riederer, P. 1989. Demonstration of monoamine oxidase-A and-B in the human brainstem by a histochemical technique. Neuroscience 33:383–400.Google Scholar
  13. 13.
    Levitt, P., Pintar, J. E., and Breakefield, X. O. 1982. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proceedings of the National Academy of Sciences of the U.S.A. 79:6385–6389.Google Scholar
  14. 14.
    Westlund, W. N., Denney, R. M., Kochersperger, L. M., Rose, R. M., and Abell, C. W. 1985. Distinct monoamine oxidase populations in primate brain. Science 230:181–183.Google Scholar
  15. 15.
    Westlund K. N., Denney, R. M., Rose, R. M., and Abell, C. W., 1988. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456.Google Scholar
  16. 16.
    Azzaro, A. J., King, J., Kotzuk, J., Schoepp, D. D., Forst, J., and Schochet, S. 1985. Guinea-pig striatum as a model of human dopamine deamination: the role of monoamine oxidase isozyme ratio, localisation and affinity for substrate in synaptic dopamine metabolism. J. Neurochem. 45:949–956.Google Scholar
  17. 17.
    Hovevey-Sion, D., Kopin, I. J., Stull, R. W., and Goldstein, D. S. 1989. Effects of monoamine oxidase inhibitors on levels of catechols and homovanillic acid in striatum and plasma. Neuropharmacology 28:791–797.Google Scholar
  18. 18.
    Knoll, J. 1983. Deprenyl (selegiline): the history of its development and pharmacological action. Acta Neurologica Scandinavica suppl 95:57–80.Google Scholar
  19. 19.
    Paterson, I. A., Juorio, A. V., Berry, M. D., and Zhu, M.-Y. 1991. Inhibition of monoamine oxidase-B by (-)-deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. Journal of Pharmacology and Experimental Therapeutics 258:1019.Google Scholar
  20. 20.
    Waldmeier, P. C., Delini-Stula, A., and Maître, L. 1976. Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. Naunyn-Schmeideberg's Archives of Pharmacology 292:9–14.Google Scholar
  21. 21.
    Butcher, S. P., Fairbrother, I. S., Kelley, J. S., and Arbuthnott, G. W. 1990. Effect of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J. Neurochem. 55:981–988.Google Scholar
  22. 22.
    Kato, T., Dong, B., Ishii, K., and Kinemuchi, H. 1986. Brain dialysis: in vivo metabolism of dopamine and serotonin by monoamine oxidase A but not B in the striatum of unrestrained rats. J. Neurochem. 46:1277–1282.Google Scholar
  23. 23.
    Fowler, C. F. and Stronlin Benedetti, M. 1983. The metabolism of dopamine by both forms of monoamine oxidase in the rat brain and its inhibition by cimoxatone. J. Neurochem. 40:1534–1541.Google Scholar
  24. 24.
    Schoepp, D. D. and Azzaro, A. J. 1981. Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum. J. Neurochem. 36:2025–2031.Google Scholar
  25. 25.
    Stenström, A., Hardy, J., and Oreland, L. 1987. Intra-and extradopamine-synaptosomal localization of monoamine oxidase in striatal homogenates from four species. Biochemical Pharmacology 36:2931–2935.Google Scholar
  26. 26.
    Juorio, A. V., Paterson, I. A., and Zhu, M. Y. 1994. Dopamine metabolism in the guinea pig stratum: role of monoamine oxidase A and B. Eur. J. Pharmacol. 254:213–220.Google Scholar
  27. 27.
    Riederer, P. and Youdim, M. B. H. 1986. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with 1-deprenyl. J. Neurochem. 46:1359–1365.Google Scholar
  28. 28.
    Yang, H.-Y. T. and Neff, N. H. 1973. β-Phenylethylamine: A specific substrate for type B monoamine oxidase of brain. J. of Pharmacol. and Exp. Ther. 187:365–71.Google Scholar
  29. 29.
    Durden, D. A., Philips, S. R., and Boulton, A. A. 1973. Identification and distribution of β-phenylethylamine in the rat. Can. J. of Biochem. 51:995–1002.Google Scholar
  30. 30.
    Philips, S. R., Rozdilsky, B., and Boulton, A. A. 1978. Evidence for the presence m-tyramine, p-tyramine, tryptamine and phenylethylamine in the rat brain and several areas of the human brain. Biol. Psychiat. 13:51–57.Google Scholar
  31. 31.
    Durden, D. A. and Philips, S. R. 1980. Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem. 34:1725–1732.Google Scholar
  32. 32.
    Philips, S. R., and Boulton, A. A. 1979. The effect of monoamine oxidase inhibitors on some arylalkylamines in the rat striatum. J. Neurochem. 33:159–167.Google Scholar
  33. 33.
    Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholamine transmission in the mamalian central nervous system? J. Neurochem. 55:1827–1837.Google Scholar
  34. 34.
    Durden, D. A. 1991. An evaluation of the negative ion mass spectra of electron-capturing derivatives of the biogenic trace amines: I-Phenylethylamine. Biol. Mass Spect. 20:611–623.Google Scholar
  35. 35.
    Yu. P., Davis, D., and Boulton, A. 1992. Aliphatic proprargylamines: potent selective irreversible monoamine oxidase B inhibitors. J. of Med. Chem. 35:3705–3713.Google Scholar
  36. 36.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. of Biol. Chem. 193:265–271.Google Scholar
  37. 37.
    Green, A. R., Mitchell, B. D., Tordoff, A. F. C., and Youdim, M. B. H. 1977. Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine. Br. J. Pharmacol. 60:343–349.Google Scholar
  38. 38.
    Wilkison, D. M. and Halpern, L. M. 1979. Turnover kinetics of dopamine and norepinephrine in the forebrain after kindling in rats. Neuropharmacology 18:219–222.Google Scholar
  39. 39.
    Milgram, N., Ivy, G., Head, E., Murphy, M., Wu, P., Ruell, W., Yu, P., Durden, D., Davis, B., Paterson, I. A., and Boulton, A. A. 1993. The effect of L-deprenyl on behaviour, cognitive function and biogenic amines in the dog. Neurochem. Res. 18:1211–1219.Google Scholar
  40. 40.
    Hornykiewicz, O. 1973. Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). Brit. Med. Bull. 29:172–178.Google Scholar
  41. 41.
    Rinne, U. K. and Sonninen, V. 1973. Brain catecholamines and their metabolites in parkinsonian patients. Arch. Neurol. 28:107–110.Google Scholar
  42. 42.
    Dyck, L. E. 1989. Release of some endogenous trace amines from rat striatal slices in the presence and absence of a monoamine oxidase inhibitor. Life Sciences 44:1149–1156.Google Scholar
  43. 43.
    Juorio, A. V. 1988. Brain β-phenylethylamine: localization, pathways, and interrelation with catecholamines. Pages 433–437,in A. Dahlstrom and R. H. Belmaker, (ed.) Progress in Catecholamine Research Part B: Central Aspects, Alan R. Liss, Inc.: New York.Google Scholar
  44. 44.
    Berry, M. D., Scarr, E., Zhu, M.-Y., Paterson, I. A., and Juotio, A. V. 1994. The effects of administration of monoamine oxidase-B inhibitors on rat striatal neurone responses to dopamine. Brit. J. Pharmacol. 113:1159–1166.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • I. A. Paterson
    • 1
  • B. A. Davis
    • 1
  • D. A. Durden
    • 1
  • A. V. Juorio
    • 1
  • P. H. Yu
    • 1
  • G. Ivy
    • 2
  • W. Milgram
    • 2
  • A. Mendonca
    • 3
  • P. Wu
    • 3
  • A. A. Boulton
    • 1
  1. 1.Neuropsychiatric Research UnitUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of PsychologyUniversity of TorontoCanada
  3. 3.Department of PhysiologyUniversity of TorontoCanada

Personalised recommendations