Neurochemical Research

, Volume 20, Issue 12, pp 1477–1481 | Cite as

In utero hypoxic ischemia decreases the cholinergic agonist-stimulated poly-phosphoinositide turnover in the developing rat brain

  • K. Hersey
  • Z. Y. Hu
  • J. P. Zhang
  • P. G. Rhodes
  • G. Y. Sun
Original Articles


Perinatal hypoxic-ischemic (HI) insult is known to cause cellular and molecular disturbances leading to functional and behavioral abnormalities during brain development. In this study, we examined the effects of an in utero HI insult on poly-phosphoinositide turnover in vivo in the cerebrum and cerebellum as well as cholinergic-stimulated turnover in cortical slices from developing rat brain. In utero HI treatment was carried out by clamping the uterine blood vessels of near-term fetuses for 5, 10 and 15 min followed by resuscitation of the newborn pups. The in vivo protocol for examining poly-PI signaling activity in 2 week-old pup brain involved intracerebral injection of [3H]inositol for 16 hr and subsequent intraperitoneal injection with lithium (8 meq/kg) for 4 hr prior to decapitation. In the control pups, lithium elicited a 2.6 fold increase in labeled inositol phosphate (IP) in the cerebrum as compared to a 1.3 fold increase in the cerebellum. In utero HI insult (5 to 15 min) resulted in a small increase in labeled IP in the cerebrum but not in the cerebellum. Carbachol stimulation of poly-PI turnover was examined in brain slices prelabeled with [3H]inositol in vivo. Incubation of the prelabeled slices with carbachol in the presence of LiCl (10 mM) resulted in a time-, dose- and age-dependent increase in labeled IP. Brain slices from 2 week-old pups that experienced in utero HI-treatment for 10 and 15 min (but not 5 min) showed a significant decrease in carbachol-stimulation of labeled IP as compared with control pups. These results indicate the effects of in utero HI on the choninergic-stimulated poly-PI signaling pathway and its implication on related functional deficits in the developing brain.

Key Words

Poly-PI turnover in utero hypoxic-ischemia developing brain cholinergic agonist carbachol 







inositol monophosphate, lithium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartus, R. T., and Johnson, H. R. 1976. Short-term memory in the rhesus monkey: disruption from the anticholinergic scopalamine. Pharmacol. Biochem. Behav. 5:39–46.Google Scholar
  2. 2.
    Beley, A., Bertrand, N., and Beley, P. 1991. Cerebral ischemia: Changes in brain choline, acetylcholine, and other monoamines as related to energy metabolism. Neurochem. Res. 16:555–561.Google Scholar
  3. 3.
    Berridge, M. J. 1987. Inositol triphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem. 56:159–193.Google Scholar
  4. 4.
    Brown, J. K., Purvis, R. T., Forfar, J. O., and Cockburn, F. 1974. Neurological aspects of perinatal asphyxia. Dev. Med. Child. Neurol. 16:567–580.Google Scholar
  5. 5.
    Cai, Z. W., Sigrest, T., Hersey, K., and Rhodes, P. G. 1995. Intrauterine hypoxia-ischemia increases NMDA-induced cGMP formation and glytamate accumulation in cultured rat cerebellar cells. Ped. Res. (in press).Google Scholar
  6. 6.
    Chen, C. K., Silverstein, F. S., Fisher, S. K., Stastman, D., and Johnston, M. V. 1989. Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover. J. Neurochem. 51:353–359.Google Scholar
  7. 7.
    Fisher, S. K., and Agranoff, B. W. 1987. Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48:999–1017.Google Scholar
  8. 8.
    Gibson, G. E., and Blass, J. P. 1976. Impaired synthesis of acetylcholine accompanying mild hypoxia and hypoglycemia. J. Neurochem. 27:37–42.Google Scholar
  9. 9.
    Heacock, A. M., Fisher, S. K., and Agranoff, B. W. 1987. Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48:1904–1911.Google Scholar
  10. 10.
    Johnston, M. V. 1983. Neurotransmitter alterations in a model of perinatal hypoxic-ischemic brain injury. Ann. Neurol. 16:511–518.Google Scholar
  11. 11.
    Johnston, M. V. 1993. Cellular alterations associated with perinatal asphyxia. Clin. Invest. Medicine 16:122–132.Google Scholar
  12. 12.
    Kunievsky, B., Bazan, N. G., and Yavin, E. 1992. Generation of arachidonic acid and diacylglycerol second messengers from polyphosphoinositides in ischemic fetal brain. J. Neurochem. 59: 1812–1819.Google Scholar
  13. 13.
    Kunievsky, B., and Yavin, E. 1994. Production and metabolism of platelet-activating factor in the normal and ischemic fetal rat brain. J. Neurochem. 63:2144–2151.Google Scholar
  14. 14.
    Leffler, C. W., Busija, D. W., Armstead, W. M., Mirro, R., and Beasley, D. G. 1989. Ischemia alters cerebral vascular responses to hypercapnia and acetylcholine in piglets. Pediatric Res. 25:180–183.Google Scholar
  15. 15.
    Lin, T. A., Navidi, M., James, W., Lin, T. N., and Sun, G. Y. 1993. Effects of acute ethanol administration on poly-phosphoinositide turnover and levels of inositol 1,4,5-trisphosphate in the mouse brain. Alcoholism: Clin. Expt. Res. 17:401–405.Google Scholar
  16. 16.
    Lin, T. A., Zhang, J. P., and Sun, G. Y. 1993. The cholinergic receptor linked phosphoinositide metabolism in mouse cerebrum and cerebellum in vivo. Brain Res. 622:169–176.Google Scholar
  17. 17.
    Magal, E., Goldin, E., Harel, S., and Yavin, E. 1988. Acute uteroplacental ischemic embryo: Lactic acid accumulation and prostaglandin production in the fetal rat brain. J. Neurochem. 51:75–80.Google Scholar
  18. 18.
    Palmer, E., Nangel-Taylow, K., Krause, J. D., Roxas, A., and Cotman, C. W. 1990. Changes in excitatory amino acid modulation of phosphoinositide metabolism during development. Devel. Brain. Res. 51:132–134.Google Scholar
  19. 19.
    Robinson, S. E., Martin, R. M., Davis, T. R., Gyenes, C. A., Ryland, J. E., and Enters, E. K. 1990. The effect of acetylcholine depletion on behavior following traumatic brain injury. Brain Res. 509:41–61.Google Scholar
  20. 20.
    Scremin, O. U., and Jenden, D. J. 1991. Time-dependent changes in cerebral choline and acetylcholine induced by transient global ischemia in rats. Stroke, 22:643–647.Google Scholar
  21. 21.
    Sherman, W. R., Munsell, L. Y., Gish, B. G., and Honchar, M. P. 1985. The effect of systemic administration of lithium on phosphoinositide metabolism in rat brain, kidney and testis. J. Neurochem. 44:798–807.Google Scholar
  22. 22.
    Sun, G. Y., Navidi, M., Yoa, F. G., Lin, T. N., Orth, O. E., Stubbs, E. B. Jr., and MacQuarrie, R. A. 1992. Lithium effects on inositol phosphate and inositol phospholipids in rat brain: Studies with radiotracer technique and ion chromatography. J. Neurochem. 58: 290–297.Google Scholar
  23. 23.
    Vannucci, R. C. 1992. Cerebral carbohydrate and energy metabolism in perinatal hypoxic-ischemic brain damage. Brain Path. 2: 229–234.Google Scholar
  24. 24.
    Volpe, B. T., Pulsinelli, W. A., Tribuan, J., Davis, H. P. 1984. Behavioral performance of rats following transient forebrain ischemia. Stroke 15:558–562.Google Scholar
  25. 25.
    Volpe, J. J. Pages 314–369,in Neurology of the Newborn, Volpe, J. J., (ed.), 3rd Edition, 1995, Saunders Press, Philadelphia, PA.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • K. Hersey
    • 1
    • 4
  • Z. Y. Hu
    • 1
    • 2
  • J. P. Zhang
    • 2
  • P. G. Rhodes
    • 3
  • G. Y. Sun
    • 2
  1. 1.Department of Child HealthUniversity of MissouriColumbia
  2. 2.Department of BiochemistryUniversity of MissouriColumbia
  3. 3.Division of Newborn Medicine, Department of PediatricsThe University of Mississippi Medical CenterJackson
  4. 4.Neonatal Intensive Care UnitPortsmouth Naval HospitalPortsmouth

Personalised recommendations