Neurochemical Research

, Volume 12, Issue 8, pp 681–685 | Cite as

Effect of external high potassium and pH on the uptake of choline in glial and neuronal cells in culture

  • S. Mykita
  • B. Ferret
  • R. Massarelli
Original Articles

Abstract

TheVmax of the uptake of choline was increased in nerve cell cultures by lowering (from 7.4 to 6.5) or increasing (from 7.4 to 8.1) the pH. In neurons no effect was observed on the value of theKm's of the uptake of either the apparent high or low affinity components. In glial cells only a low affinity component was measured at pH 6.5 and diffusion was observed at pH 8.1. An excess of K+ ions in the incubation medium reproduced the increase inVmax observed with changes in pH suggesting a possible dependence of the uptake of choline upon the H+ and OH gradients. Taking into account the characteristics already known of the transport of choline into nerve cells, such a dependence adds new insight in the mechanisms underlying the transport and indicates another possible regulation of choline entry, eventually directed towards the synthesis of acetylcholine.

Key Words

Choline glial cells neuronal cells culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic, S. 1973. Effect of external pH on the choline entry into the rat diaphragm muscle fibre. Biochem. Pharmacol. 22:2433–2439.PubMedGoogle Scholar
  2. 2.
    Blusztajn, J. K., Tacconi, M. T., Zeisel, S. H., and Wurtmann, R. J. 1985. Are the phospholipids in cholinergic neurons a source of choline for acetylcholine synthesis? Vol. 2, Pages 229–236,in Horrocks, L. A., Kanfer, J. N., and Porcellati, G. (eds), Phospholipids in the Nervous System, Raven Press, New York.Google Scholar
  3. 3.
    Blusztajn, J. K., Holbrook, P. G., Lakher, M., Liscovitch, M., Maire, J. C., Mauron, C., Richardson, W. I., Tacconi, M. T. and Wurtmann, R. J. 1986. Relationships between acetylcholine release and membrane phosphatidylcholine turnover in brain and in cultured cholinergic neurons. Pages 283–290,in Horrocks, L. A., Freysz, L., and Toffano, G. (eds.), Phospholipid Research and the Nervous System Biochemical and Molecular Pharmacology, Liviana Press.Google Scholar
  4. 4.
    Booher, J., and Sensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flasks cultures. Neurobiology 2:97–105.PubMedGoogle Scholar
  5. 5.
    Carroll, P. T., and Aspry, J. M. 1980. Subcellar origin of cholinergic transmitter release from mouse brain. Science 210:641–642.PubMedGoogle Scholar
  6. 6.
    Eder-Colli, L., and Amato, S. 1985. Membrane-bound choline acetyltransferase in Torpedo electric organ: a marker for synaptosomal plasma membrane? Neuroscience 15:577–589.PubMedGoogle Scholar
  7. 7.
    Hebb, C. O., and Whittaker, U. P. 1958. Intracellular distribution of acetylcholine and choline acetylase. J. Physiol. 142:187–196.PubMedGoogle Scholar
  8. 8.
    Hoffmann, D., Ferret, B., Mykita, S., and Massarelli, R. 1986. The efflux of choline from nerve cells: mediation by ionic gradients and functional exchange of choline from glial cells to neurons. Pages 915–922,in Hanin, I. (ed.), Dynamics of Cholinergic Function, Plenum Press, New York.Google Scholar
  9. 9.
    Mykita, S., Ferret, B., Hoffmann, D., and Massarelli, R. Ion dependent efflux of choline from neuronal and glial cell cultures. Neurochem. Internat. (in press).Google Scholar
  10. 10.
    Johnson, R. G., Carlson, N. J., and Scarpa, A. 1978. pH and catecholamine distribution in isolated chromaffin granules. J. Biol. Chem. 253:1512–1521.PubMedGoogle Scholar
  11. 11.
    Johnson, R. G., and Scarpa, A. 1979. Protonmotive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254:3750–3760.PubMedGoogle Scholar
  12. 12.
    Jope, R. S., and Jenden, D. J. 1979. Choline and phospholipid metabolism and the synthesis of acetylcholine in rat brain. J. Neurosci. Res. 4:69–82.PubMedGoogle Scholar
  13. 13.
    Kuhar, M. J., and Murrin, L. C. 1978. Sodium-dependent high affinity choline uptake. J. Neurochem. 30:15–21.PubMedGoogle Scholar
  14. 14.
    Lefresne, P., Beaujouan, J. C., and Glowinski, J. 1978. Evidence for extramitochondrial pyruvate dehydrogenase involved in acetylcholine synthesis. Nature 274:497–500.PubMedGoogle Scholar
  15. 15.
    Lindmar, R., Loffelholz, K., and Sandmann, J. 1986. Characterization of choline efflux from the perfused heart at rest and after muscarine receptor activation. Naunyn-Schmiederberg's Arch. Pharmacol. 332:224–229.Google Scholar
  16. 16.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  17. 17.
    Massarelli, R., Gorio, A., and Dreyfus, H. 1982. Influx, metabolism and efflux of choline in nerve cells and synaptosomes, role of sialocompounds and glycoconjugates. J. Physiol. (Paris) 78:392–398.Google Scholar
  18. 18.
    Massarelli, R., Mozzi, R., Golly, F., Hattori, H., Dainous, F., Kanfer, J. N., and Freysz, L. 1986. Synthesis de novo of choline, production of choline from phospholipids, and effects of CDP-choline on nerve cell survival. Pages 273–281,in Horrocks, L. A., Freysz, L., and Toffano, G. (eds.), Phospholipid research and the nervous system: biochemical and molecular pharmacology, Liviana Press, Padova, Italy.Google Scholar
  19. 19.
    Pedersen, P. L. 1982. H+-ATPases in biological membranes: an overview of their function, structure mechanism and regulatory properties. Pages 1–20,in Carafoli, E., and Scarpa, A. (eds.), Transport ATPases, Ann. N.Y. Acad. Sci. vol. 402, New York.Google Scholar
  20. 20.
    Peng, J. H., McGeer, P. L., and McGeer, E. G. 1986. Membrane-bound choline acetyltransferase from human brain: purification and properties. Neurochem. Res. 11:959–971.PubMedGoogle Scholar
  21. 21.
    Pettmann, B., Louis, J. C., and Sensenbrenner, M. 1979. Morphological and biochemical maturation of neurons cultured in the absence of glial cells. Nature 281:378–380.PubMedGoogle Scholar
  22. 22.
    Roos, A., and Bozon, N. F. 1981. Intracellular pH. Physiol. Rev. 61:296–434.PubMedGoogle Scholar
  23. 23.
    Schuldiner, S., Fishkes, H., and Kanner, B. I. 1978. Role of transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proc. Natl. Acad. Sci. USA 75:3713–3716.PubMedGoogle Scholar
  24. 24.
    Smith, C. P., and Carroll, P. T. 1980. A comparison of solubilized and membrane bound forms of choline-O-acetyltransferase (EC 2.3.1.6.) in mouse brain nerve endings. Brain Res. 185:363–371.PubMedGoogle Scholar
  25. 25.
    Simon, J. R., and Kuhar, M. J. 1976. High affinity choline uptake: ionic and energy requirements. J. Neurochem. 27:93–99.PubMedGoogle Scholar
  26. 26.
    Toll, L., and Howard, B. D. 1978. Role of Mg2+-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry 17:2517–2523.Google Scholar
  27. 27.
    Toll, L., and Howard, B. D. 1980. Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles. J. Biol. Chem. 255:1787–1789.PubMedGoogle Scholar
  28. 28.
    Tuček, S. 1978. Acetylcholine synthesis in neurons, Chapman and Hall, 108–119.Google Scholar
  29. 29.
    Tuček, S. 1984. Problems in the organization and control of acetylcholine synthesis in brain neurons. Prog. Biohys. Molec. Biol. 44:1–46.Google Scholar
  30. 30.
    Vaughan-Jones, R. J. 1982. Chloride bicarbonate exchange in the sheep cardiac Purkinje fiber. Pages 239–252,in Nuccitelli, R., and Deamer D. W. (eds.), Intracellular pH: its measurement, regulation and utilization in cellular functions, A. Liss, New York.Google Scholar
  31. 31.
    Wong, T., Hoffmann, D., Dreyfus, H., Louis, J. C., and Massarelli, R. 1982. Efflux of choline from neurons and glia in culture. Neurosci. Lett. 29:293–296.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • S. Mykita
    • 1
  • B. Ferret
    • 1
  • R. Massarelli
    • 1
  1. 1.Centre de Neurochimie du CNRS and Unité 44 de I'INSERMStrasbourg CedexFrance

Personalised recommendations