Lithuanian Mathematical Journal

, Volume 24, Issue 2, pp 130–142 | Cite as

Necessary and sufficient conditions for the convergence of semimartingales to processes with conditionally independent increments

  • K. Kubilius


Independent Increment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    T. C. Brown, “A martingale approach to the Poisson convergence of point processes,” Ann. Prob.,6, 615–628 (1978).Google Scholar
  2. 2.
    R. Rebolledo, “La methode des martingales appliquee a l'etude de la convergence en loi de processus,” Bull. Soc. Math. France, Mem. 62, 1–125 (1979).Google Scholar
  3. 3.
    R. Rebolledo, “Central limit theorems for local martingales,” Z. Wahr. Verw. Geb.,51, 269–286 (1980).Google Scholar
  4. 4.
    Ju. Kabanov, R. Liptser, and A. Shiryaev, “Some limit theorems for simple point processes (martingale approach),” Stochastics,3, No. 3, 203–216 (1980).Google Scholar
  5. 5.
    R. Sh. Liptser and A. N. Shiryaev, “Functional central limit theorem for semimartingales,” Teor. Veroyatn. Primen.,25, No. 4, 683–703 (1980).Google Scholar
  6. 6.
    R. Sh. Liptser and A. N. Shiryaev, “Weak convergence of semimartingales to stochastically continuous processes with independent increments and conditionally independent increments,” Mat. Sb.,116(158), No. 3 (11), 331–358 (1981).Google Scholar
  7. 7.
    K. Kubilyus, “Limit theorems for semimartingales,” Candidate's Dissertation, Vilnius (1981).Google Scholar
  8. 8.
    B. Grigelionis and R. Mikulyavichyus, “Weak convergence of semimartingales,” Liet. Mat. Rinkinys,21, No. 3, 9–24 (1981).Google Scholar
  9. 9.
    B. Grigelionis and R. Mikulyavichyus, “Stably weak convergence of semimartingales and point processes,” Teor. Veroyatn. Primen.,28, No. 2 (1983).Google Scholar
  10. 10.
    T. C. Brown, “Compensators and Cox convergence,” Univ. Bath, 1980 (preprint).Google Scholar
  11. 11.
    J. Jacod, A. Klopotowski, and J. Memin, “Theoreme de la limite centrale et convergence fonctionnelle vers un processus a accroissements independants: la methode des martingales,” Ann. Inst. Henri Poincare, ser. B,18, 1–45 (1982).Google Scholar
  12. 12.
    H. Rootzen, “On the functional central limit theorem for martingales. I, II,” Z. Wahr. Verw. Geb.,38, 199–210 (1977);51, 79–94 (1980).Google Scholar
  13. 13.
    P. Gänssler and E. Häusler, “Remarks on the functional central limit theorem for martingales,” Z. Wahr. Verw. Geb.,50, 237–243 (1979).Google Scholar
  14. 14.
    R. Rebolledo, “The central limit theorem for semimartingales: necessary and sufficient conditions,” 1980 (preprint).Google Scholar
  15. 15.
    R. Sh. Liptser and A. N. Shiryaev, “Necessary and sufficient conditions in the functional central limit theorem for semimartingales,” Teor. Veroyatn. Primen.,26, No. 1, 132–137 (1981).Google Scholar
  16. 16.
    R. Liptser and A. Shiryaev, “On a problem of necessary and sufficient conditions in functional central limit theorem for local martingales,” Z. Wahr. Verw. Geb.,59, 311–318 (1982).Google Scholar
  17. 17.
    D. Aldous, “Weak convergence of stochastic processes for processes viewed in the Strasbourg manner,” 1978 (preprint).Google Scholar
  18. 18.
    I. S. Helland, “On weak convergence to Brownian motions,” Z. Wahr. Verw. Geb.,52, 251–265 (1982).Google Scholar
  19. 19.
    I. S. Helland, “Minimal conditions for weak convergence to a diffusion process on the line,” Ann. Prob.,9, 429–452 (1981).Google Scholar
  20. 20.
    D. J. Aldous and G. K. Eagleson, “On mixing and stability of limit theorems,” Ann. Prob.,6, 325–331 (1978).Google Scholar
  21. 21.
    J. Jacod and J. Memin, “Sur un type de convergence intermediaire entre la convergence en loi at la convergence en probabilitie,” Sem. Probab., XV, Lecture Notes Math.,850, 529–560 (1981).Google Scholar
  22. 22.
    K. Dellacherie, Capacity and Stochastic Processes [Russian translation], Mir, Moscow (1975).Google Scholar
  23. 23.
    A. V. Skorokhod, “Limit theorems for stochastic processes,” Teor. Veroyatn. Primen.,1, No. 3, 289–319 (1956).Google Scholar
  24. 24.
    C. Stone, “Weak convergence of stochastic processes defined on semiinfinite time intervals,” Proc. AMS,14, 694–696 (1963).Google Scholar
  25. 25.
    T. Lindvall, “Weak convergence of probability measures and random functions in the functional space D[0, ∞),” J. Appl. Prob.,10, 109–121 (1973).Google Scholar
  26. 26.
    P. Billingsly, Convergence of Probability Measures, Wiley (1968).Google Scholar
  27. 27.
    Yu. V. Prokhorov, “Convergence of stochastic processes and limit theorems of probability theory,” Teor. Veroyatn. Primen.,1, No. 2, 177–238 (1956).Google Scholar
  28. 28.
    B. Grigelionis, “Characterization of stochastic processes with conditionally independent increments,” Liet. Mat. Rinkinys,15, No. 4, 53–60 (1975).Google Scholar
  29. 29.
    B. Grigelionis, “Markov additive processes,” Liet. Mat. Rinkinys,18, No. 3, 43–47 (1978).Google Scholar
  30. 30.
    Rao K. Murali, “On decomposition theorems of Meyer,” Math. Scand.,24, 66–78 (1969).Google Scholar
  31. 31.
    D. Aldous, “Stopping time and tightness,” Ann. Prob.,6, 335–340 (1978).Google Scholar
  32. 32.
    E. Lenglart, “Relation de domination entre deux processus,” Ann. Inst. Henri Poincaré, ser. B,13, 171–179 (1977).Google Scholar
  33. 33.
    P. A. Meyer, Un Cours sur les Integrales Stochastiques, Lect. Notes Math., Vol. 511, Springer-Verlag (1976).Google Scholar
  34. 34.
    D. L. McLeish, “An extended martingale principle,” Ann. Prob.,6, 144–150 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • K. Kubilius

There are no affiliations available

Personalised recommendations