Siberian Mathematical Journal

, Volume 31, Issue 3, pp 395–408 | Cite as

Methods of investigation of the causal structure of homogeneous Lorentz manifolds

  • A. V. Levichev


Causal Structure Lorentz Manifold Homogeneous Lorentz Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. P. Gavrilov, “Geodesics of left-invariant metrics on a connected two-dimensional non-Abelian Lie Group,” Gravitatsiya i Teor. Otnositel'nosti,18, 28–44 (1981).Google Scholar
  2. 2.
    A. K. Guts, “The axiomatic theory of relativity,” Usp. Mat. Nauk,37, No. 2, 39–79 (1982).Google Scholar
  3. 3.
    J. Beem and P. Ehrlich, Global Lorentzian Geometry, Marcell Dekker, Inc., New York (1981).Google Scholar
  4. 4.
    A. V. Levichev, “Chronogeometry of an electromagnetic wave defined by a bi-invariant metric on the oscillator group,” Sib. Mat. Zh.,27, No. 2, 117–126 (1986).Google Scholar
  5. 5.
    A. V. Levichev, “Some methods of investigation of causal structures of homogeneous Lorentz manifolds,” Preprint, Siberian Branch of the Academy of Sciences of the USSR, Institute of Mathematics, Novosibirsk, No. 20 (1986).Google Scholar
  6. 6.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  7. 7.
    R. Penrose, Techniques of Differential Topology in Relativity, SIAM Publications, Philadelphia (1972).Google Scholar
  8. 8.
    S. Hawking and G. Ellis, The Large-Scale Structure of Space-Time, Cambridge University Press, London (1973).Google Scholar
  9. 9.
    A. D. Aleksandrov, “Philosophical content and meaning of the theory of relativity,” Vopr. Filosofii, No. 1, 67–84 (1959).Google Scholar
  10. 10.
    S. Kobayashi and K. Nomidzu, Foundations of Differential Geometry, Vol. 2, Interscience Publishers, New York (1969).Google Scholar
  11. 11.
    N. Bourbaki, General Topology. Basic Structures [Russian translation], Nauka, Moscow (1956).Google Scholar
  12. 12.
    N. Bourbaki, General Topological Groups, Numbers, and Their Groups and Spaces [Russian translation], Nauka, Moscow (1969).Google Scholar
  13. 13.
    A. V. Levichev, “Left-invariant Lorentz order on the fundamental affine group,” Sib. Mat. Zh.,28, No. 3, 152–156 (1987).Google Scholar
  14. 14.
    F. Tipler, “General relativity and conjugate ordinary differential equations,” J. Diff. Eq.,30, 165–174 (1978).Google Scholar
  15. 15.
    M. A. Ulanovskii, “The exponential map in pseudo-Riemannian spaces of physical type,” Ukrain. Geometr. Sb. Vyp.,16, 97–118 (1974).Google Scholar
  16. 16.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  17. 17.
    A. S. Mishchenko, “Integrals of geodesic flows on Lie groups,” Funkts. Anal. Prilozhen.,4, No. 3, 73–77 (1970).Google Scholar
  18. 18.
    S. P. Gavrilov, “Left-invariant metrics on one-connected Lie groups containing Abelian subgroup of codimension one,” Gravitatsiya i Teor. Otnositel'nosti,21, 13–47 (1984).Google Scholar
  19. 19.
    Mathematical Encyclopedia [in Russian], Vol. 2, Sovetskaya Entsiklopediya, Moscow (1979).Google Scholar
  20. 20.
    A. V. Levichev, “Sufficient condition of absence of a closed causal curve in homogeneous space-time,” Iozv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 118–119 (1985).Google Scholar
  21. 21.
    D. V. Alekseevskii and B. P. Putko, “Completeness of left-invariant metrics on Lie groups,” Funkts. Anal. Prilozhen.,21, No. 3, 73–74 (1987).Google Scholar
  22. 22.
    A. V. Levichev, “Prescribing the conformal geometry of a Lorentz manifold by means of its causal structure,” Dokl. Akad. Nauk SSSR,293, No. 6, 1301–1305 (1987).Google Scholar
  23. 23.
    A. V. Levichev, “Causal cones in Lie algebras of small dimensions,” Sib. Mat. Zh.,26, No. 5, 192–195 (1985).Google Scholar
  24. 24.
    D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein's Field Equations, Cambridge University Press, Cambridge (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. V. Levichev

There are no affiliations available

Personalised recommendations