Siberian Mathematical Journal

, Volume 29, Issue 5, pp 697–707 | Cite as

Möbius spaces of functions on the Shilov boundaries of classical domains of tubular type

  • M. L. Agranovskii


Classical Domain Shilov Boundary Tubular Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. L. Agranovskii, “Invariant algebras on noncompact Riemannian symmetric spaces,” Dokl. Akad. Nauk SSSR,207, No. 3, 513–516 (1972).Google Scholar
  2. 2.
    M. L. Agranovskii, “Invariant algebras of functions on symmetric spaces,” Trudy Moskov. Mat. Obshch.,47, 159–178 (1984).Google Scholar
  3. 3.
    A. Nagel and W. Rudin, “Möbius-invariant function spaces on balls and spheres,” Duke Math. J.,43, No. 4, 841–865 (1976).Google Scholar
  4. 4.
    W. Rudin, Function Theory of the Unit Ball of Cn, Springer-Verlag, New York-Berlin (1980).Google Scholar
  5. 5.
    M. L. Agranovskii, “Invariant spaces and traces of holomorphic functions on frameworks of classical domains,” Sib. Mat. Zh.,25, No. 2, 3–12 (1984).Google Scholar
  6. 6.
    R. M. Timoney, “Maximal invariant spaces of analytic functions,” Indiana Univ. Math. J.,31, No. 5, 651–664 (1982).Google Scholar
  7. 7.
    D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970).Google Scholar
  8. 8.
    M. Takeuchi, “Polynomial representations associated with bounded symmetric domains,” Osaka J. Math.,10, 441–475 (1973).Google Scholar
  9. 9.
    Loo-Keng Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains [Russian translation], IL, Moscow (1959).Google Scholar
  10. 10.
    K. D. Johnson, “On a ring of invariant polynomials on a Hermitian symmetric space,” J. Algebra,67, 72–81 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • M. L. Agranovskii

There are no affiliations available

Personalised recommendations