Siberian Mathematical Journal

, Volume 28, Issue 1, pp 104–110 | Cite as

The Grunsky coefficient conditions

  • S. L. Krushkal'


Coefficient Condition Grunsky Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. M. Milin, Univalent Functions and Orthonormal Systems [in Russian], Nauka, Moscow (1975).Google Scholar
  2. 2.
    Chr. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen (1975).Google Scholar
  3. 3.
    R. Kühnau, “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen,” Math. Nachr.,48, Nos. 1–6, 77–105 (1971).Google Scholar
  4. 4.
    S. L. Krushkal', “The Carathéodory metric of a universal Teichmüller space and the quasiconformal extendability of analytic functions,” Dokl. Akad. Nauk SSSR,272, No. 5, 1052–1055 (1983).Google Scholar
  5. 5.
    S. L. Krushkal' [S. L. Kruŝkal'], “Invariant metrics on Teichmüller spaces and quasicon-formal extenability of analytic functions,” Ann. Acad. Sci. Fenn., Ser. AI. Math.,10, 249–253 (1985).Google Scholar
  6. 6.
    R. Kühnau, “Zu den Gruskyschen Koeffizientenbedingungen,” Ann. Acad. Sci. Fenn., Ser. AI, Math.,6, 125–130 (1981).Google Scholar
  7. 7.
    J. Becker, “Conformal mappings with quasiconformal extensions,” in: Aspects of Contemporary Complex Analysis (Proc. Conf. Durham, 1979), D. A. Brannan and J. G. Clunie (eds.), Academic Press, London-New York (1980), pp. 37–77.Google Scholar
  8. 8.
    M. Schiffer, “Fredholm eigenvalues and Grunsky matrices,” Ann. Prolon. Math.,39, 149–164 (1981).Google Scholar
  9. 9.
    R. Kühnau, “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen,” Ann. Acad. Sci. Fenn., Ser. AI. Math.,7, 383–391 (1982).Google Scholar
  10. 10.
    E. Reich and K. Strebel, “Extremal quasiconformal mappings with given boundary values,” in: Contributions to Analysis, L. V. Ahlfors etc. (eds.), Academic Press, London-New York (1974), pp. 375–391.Google Scholar
  11. 11.
    S. L. Krushkal' and R. Kühnau, Quasiconformal Mappings-New Methods and Applications [in Russian], Nauka, Novosibirsk (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • S. L. Krushkal'

There are no affiliations available

Personalised recommendations