Advertisement

Siberian Mathematical Journal

, Volume 14, Issue 5, pp 796–799 | Cite as

Decidability of certain theories of integers

  • Yu. G. Penzin
Brief Communications
  • 16 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. L. Ershov, “Undecidability of certain fields,” Dokl. Akad. Nauk SSSR,161, No. 1, 27–29 (1965).Google Scholar
  2. 2.
    M. A. Taitslin, “Elementary theories of lattices,” Algebra i Logika,9, No. 4, 473–483 (1970).Google Scholar
  3. 3.
    Yu. G. Penzin, “Decidability of integer theories with addition, order, and predicates identifying a chain of subgroups,” Proc. Eleventh All-Union Algebra Colloquium [in Russian], Kishinev (1971), p. 165.Google Scholar
  4. 4.
    Yu. G. Penzin, “Decidability of integer theories with addition, order, and multiplication by one arbitrary number,” Proc. Eleventh All-Union Algebra Colloquium [in Russian], Kishinev (1971).Google Scholar
  5. 5.
    J. Robinson, “Definability and decision problems in arithmetic,” J. Symbolic Logic,14, No. 2, 98–114 (1949).Google Scholar
  6. 6.
    R. Robinson “Undecidable rings,” Trans. Amer. Math. Soc.,70, 1, 137–159 (1951).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1974

Authors and Affiliations

  • Yu. G. Penzin

There are no affiliations available

Personalised recommendations