Skip to main content
Log in

Preferential inhibition of acetylcholinesterase molecular forms in rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massouliè, J., and Bon, S. 1982. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann. Rev. Neurosci. 5:57–106.

    Google Scholar 

  2. Brimijoin, S. 1983. Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog. Neurobiol. 21:291–322.

    Google Scholar 

  3. Rakonczay, Z. 1986. Mammalian brain acetylcholinesterase. Pages 319–360,in Neuromethods. Neurotransmitter enzymes, Vol. 5, Humana Press Inc., New Jersey.

    Google Scholar 

  4. Inestrosa, N. C., Reiness, C. G., Reichardt, L. F., and Hall, Z. W. 1981. Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12 cells treated with nerve growth factor. J. Neurosci. 1:1260–1267.

    Google Scholar 

  5. Di Giamberardino, L., and Couraud, J. Y. 1978. Rapid accumulation of high molecular weight acetylcholinesterase in transected sciatic nerve. Nature (London) 271:170–172.

    Google Scholar 

  6. Rieger, F., and Vigny, M. 1976. Solubilization and physicochemical characterization of rat brain acetylcholinesterase: development and maturation of its molecular forms. J. Neurochem. 27:121–129.

    Google Scholar 

  7. Vigny, M., Bon, S., Massouliè, J., and Leterrier, F. 1978. Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus, Torpedo, rat and chicken. Eur. J. Biochem. 85:317–323.

    Google Scholar 

  8. Bon, S., and Massouliè, J. 1976. An active monomeric form of Electrophorus electricus acetylcholinesterase. FEBS Lett. 67:99–103.

    Google Scholar 

  9. Gentinetta, R., and Brodbeck, U. 1976. Differences in subunit activities in acetylcholinesterase as possible cause for apparent deviation from normal Michaelis-Menten kinetics. Biochem. Biophys. Acta. 438:437–448.

    Google Scholar 

  10. Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L. 1986. Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262:4441–4444.

    Google Scholar 

  11. Andres, C., Mourabit, M., Stutz, C., Mark, J., and Waksman, A. 1990. Are soluble and membrane-bound rat brain acetylcholinesterase different? Neurochem. Res. 15:1065–1072.

    Google Scholar 

  12. Skau, K. A. 1981. Ethopropazine inhibition of AChE molecular forms. Pharmacologist 23:224.

    Google Scholar 

  13. Skau, K. A. 1982. Differential pharmacology of acetylcholinesterase molecular forms. Pharmacologist 24:221.

    Google Scholar 

  14. Volpe, M. T., Bisso, G. M., and Michalek, H. 1990. In vivo and in vitro effects of diisopropylfluorophosphate and Paraxon on individual molecular forms of rat brain acetylcholinesterase. Neurochem. Res. 15:975–979.

    Google Scholar 

  15. Becker, R. E., and Giacobini, E. 1988. Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological and therapeutic aspects. Drug Development. Res. 12:163–195.

    Google Scholar 

  16. Pomponi, M., Giacobini, E., and Brufani, M. 1990. Present state and future development of the therapy of Alzheimer disease. Aging 2:125–153.

    Google Scholar 

  17. Atack, J. R., Perry, E. K., Bonham, J. R., Perry, R. H., Tomlinson, B. E., Blessed, G., and Fairbairn, A. 1983. Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10 s) form. Neurosci. Lett. 40:199–204.

    Google Scholar 

  18. Fishman, E. B., Siek, G. C., MacCallum, R. D., Bird, E. D., Volicer, L., and Marquis, J. K. 1986. Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann. Neurol. 19:246–252.

    Google Scholar 

  19. Younkin, S. G., Goodridge, B., Katz, J., Lockett, G., Nafziger, D., Usiak, M. F., and Younkin, L. H. 1986. Molecular forms of acetylcholinesterases in Alzheimer's disease. Federation Proc. 45:2982–2988.

    Google Scholar 

  20. Siek, G. C., Katz, L. S., Fishman, E. B., Koros, T. S., and Marquis, J. K. 1990. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol. Psychiatry 27:573–580.

    Google Scholar 

  21. Nakano, S., Kato, T., Nakamura, S., and Kameyama, M. 1986. Acetylcholinesterase activity in cerebrospinal fluid of patients with Alzheimer's disease and senile dementia. J. Neurol. Sci. 75:213–223.

    Google Scholar 

  22. Bisso, G. M., Diana, G., Fortuna, S., Meneguz, A., and Michalek, H. 1988. Change in the distribution of acetylcholinesterase molecular forms in frontoparietal cortex of the rat following nucleus basalis lesion with kainic acid. Brain Res. 449:391–394.

    Google Scholar 

  23. Brufani, M., Marta, M., and Pomponi, M. 1986. Anticholinesterase activity of a new carbamate, heptyl-physostigmine (C8) in view of its use in patients with Alzheimer-type dementia. Eur. J. Biochem. 157:115–120.

    Google Scholar 

  24. DeSarno, P., Pomponi, M., Giacobini, E., Tang, X. C., and Williams, E. 1989. The effect of heptyl-physostigmine, a new cholinesterase inhibitor, on the central cholinergic system of the rat. Neurochem. Res. 14:971–977.

    Google Scholar 

  25. Johnson, C. D., and Russell, R. L. 1975. A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Analyt. Biochem. 64:229–238.

    Google Scholar 

  26. Grassi, J., Vigny, M., and Massouliè, J. 1982. Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J. Neurochem. 38:457–469.

    Google Scholar 

  27. Lazer, M., and Vigny, M. 1980. Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma x sympathetic ganglion cell hybrid cell line. J. Neurochem. 35:1067–1079.

    Google Scholar 

  28. Taylor, P. B., Rieger, F., Shelanski, M. L., and Greene, L. A. 1981. Cellular localization of the multiple molecular forms of acetylcholinesterase in cultured neuronal cells. J. Biol. Chem. 256:3827–3830.

    Google Scholar 

  29. Ferrand, C., Clarous, D., Delteil, C., and Weber, M. J. 1986. Cellular localization of the molecular forms of acetylcholinesterase in primary cultures of rat sympathetic neurons and analysis of the secreted enzyme. J. Neurochem. 46:349–358.

    Google Scholar 

  30. Gisinger, V., and Vigny, M. 1977. A specific form of acetylcho-linesterase is secreted by rat sympathetic ganglia. FEBS Lett. 84:253–256.

    Google Scholar 

  31. Changeux, J. P. 1966. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol. Pharmacol. 2:369–392.

    Google Scholar 

  32. Zonetta, J. P., Raconczay, Z., Reeber, A., and Vincedon, G. 1981. Antibodies against the membrane-bound acetylcholinesterase from adult rat brain. FEBS Lett. 129:293–296.

    Google Scholar 

  33. Sørensen, K., Gentinetta, R., and Brodbeck, U. 1982. An amphiphile-dependent form of human brain caudate nucleus acetylcholinesterase: purification and properties. J. Neurochem. 39:1050–1060.

    Google Scholar 

  34. Roufogalis, B. D., and Quist, E. E. 1971. Relative binding sites of pharmacologically active ligand on bovine erythrocyte acetylcholinesterase. Mol. Pharmacol. 8:41–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Morris H. Aprison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogane, N., Giacobini, E. & Messamore, E. Preferential inhibition of acetylcholinesterase molecular forms in rat brain. Neurochem Res 17, 489–495 (1992). https://doi.org/10.1007/BF00969897

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969897

Key Words

Navigation