Skip to main content

Advertisement

Log in

Serotonin fiber innervation of cerebellar cell suspensions intraparenchymally grafted to the cerebellum ofpcd mutant mice

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

One aspect of integration of implanted neurons into the neuronal circuitry of a defective host brain is the re-establishment of a host-to-graft afferent innervation. We addressed this issue by using the adult cerebellum of ‘Purkinje cell degeneration’ (pcd) mutant mice, which lack virtually all Purkinje cells after postnatal day (P) 45. Purkinje cells constitute one of the cerebellar cell types being innervated by axons of raphé serotonin (5-HT) neurons. In normal mice, 5-HT-immunoreactive fibers are distributed to all cerebellar folia. Following Purkinje cell loss inpcd mice, cerebellar 5-HT-immunoreactive fibers persist. Cerebellar cell suspensions were prepared from embryonic day (E) 11–13 normal mouse embryos and were intraparenchymally grafted into the cerebellum ofpcd mutants either directly or after pre-treatment with 5, 7-dihydroxytryptamine (5,7-DHT) to selectively remove 5-HT cells of donor origin. The state of Purkinje cells and 5-HT axons was monitored in alternate sections by 28-kDa Ca2+-binding protein (CaBP) and 5-HT immunocytochemistry, respectively. Serotonin-immunoreactive axons were seen in the grafts from 5 to 32 days after transplantation. In some of the grafts which had not been pre-treated with 5,7-DHT, a small number of 5-HT-immunoreactive cell bodies was found, indicating that part of the 5-HT fiber innervation of the graft could actually derive from donor cells. On the other hand, in grafts pre-treated with 5,7-DHT, no 5-HT cell bodies were seen in the grafted cerebellum; 5-HT fibre innervation of the grafts occurred, but it appeared to be slightly less robust compared to situations of co-grafted 5-HT cell bodies. These findings suggest that host 5-HT fibers are able to provide afferent innervation to donor cerebellar tissue; the presence of co-grafted 5-HT cells may augment such an innervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björklund, A., and Stenevi, U. 1979. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177:555–560.

    Google Scholar 

  2. Low, W. C., Lewis, P. R., Bunch, S. T., Dunnett, S. B., Thomas, S. R., Iversen, S. D., Björklund, A., and Stenevi, U. 1980. Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with septo-hippocampal lesions. Nature (Lond.) 300:260–262.

    Google Scholar 

  3. Foster, G. A., Schultzberg, M., Gage, F. H., Björklund, A., Hökfelt, T., Nornes, H., Cuello, A. C., Verhofstad, A. A. J., and Visser, T. J. 1985. Transmitter expression and morphological development of embryonic medullary and mesencephalic raphé neurones after transplantation to the adult rat central nervous system. I. Grafts to the spinal cord. Exp. Brain Res. 60:427–444.

    Google Scholar 

  4. Segal, M., and Azmitia, E. C. 1986. Fetal raphe neurons grafted into the hippocampus develop normal adult physiological properties. Brain Res. 364:162–166.

    Google Scholar 

  5. Foster, G. A., Schultzberg, M., Gage, F. H., Björklund, A., Hökfelt, T., Cuello, A. C., Verhofstad, A. A. J., Visser, T. J., and Emson, P. C. 1988. Transmitter expression and morphological development of embryonic medullary and mesencephalic raphé neurones after transplantation to the adult rat central nervous system. I. Grafts to the striatum. Exp. Brain Res. 70:242–255.

    Google Scholar 

  6. Bolam, J. P., Freund, T. F., Björklund, A., Dunnett, S. B., and Smith, A. D. 1987. Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host neostriatum. Exp. Brain Res. 68:131–146.

    Google Scholar 

  7. Doucet, G., Murata, Y., Brundin, P., Bosler, O., Mons, N., Geffard, M., Ouimet, C. C., and Björklund, A. 1989. Host afferents into intrastriatal transplants of fetal ventral mesencephalon. Exp. Neurol. 106:1–19.

    Google Scholar 

  8. Wiktorin, K., and Björklund, A. 1989. Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum-II. Cortical afferents. Neuroscience 30:297–311.

    Google Scholar 

  9. Armengol, J. A., Sotelo, C., Angaut, P., and Alvarado-Mallart, R. M. 1989. Organization of host afferents to cerebellar grafts implanted into kainate lesioned cerebellum in adult rats: Hodological evidence for the specificity of host-graft interactions. Eur. J. Neurosci. 1:75–93.

    Google Scholar 

  10. Chan-Palay, V. 1975. Fine structure of labelled axons in the cerebellar cortex and nuclei of rodents and primates after intraventricular infusions with tritiated serotonin. Anat. Embryol. (Berl.) 148:235–265.

    Google Scholar 

  11. Taber Pierce, E., Hoddevik, G. H., and Walberg, F. 1977. The cerebellar projection from the raphe nuclei in the cat as studied with the method of retrograde transport of horseradish peroxidase. Anat. Embryol. (Berl.) 152:73–87.

    Google Scholar 

  12. Bishop, G. A., and Ho, R. H. 1985. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 331:195–207.

    Google Scholar 

  13. Sotelo, C., and Beaudet, A. 1979. Influence of experimentally induced agranularity on the synaptogenesis of serotonin nerve terminals in rat cerebellar cortex. Proc. R. Soc. Lond. (Biol.) 206:133–138.

    Google Scholar 

  14. Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A. 1972. Effects of serotonin on central neurons: microiontophoretic application. Fed. Proc. 31:97–106.

    Google Scholar 

  15. Weiss, M., and Pellet, J. 1982. Raphe-cerebellum interactions. II. Effects of midbrain raphe stimulation and harmaline administration on single unit activity of cerebellar cortical cells in the rat. Exp. Brain Res. 48:171–176.

    Google Scholar 

  16. Lee, M., Strahlendorf, J. C., and Strahlendorf, H. K. 1986. Modulatory action of serotonin on glutamate-induced excitation of cerebellar Purkinje cells. Brain Res. 361:107–113.

    Google Scholar 

  17. Strahlendorf, J. C., Lee, M., and Strahlendorf, H. K. 1989. Modulatory role of serotonin on GABA-elicited inhibition of cerebellar Purkinje cells. Neuroscience 30:117–126.

    Google Scholar 

  18. Mullen, R. J., Eicher, E. M., and Sidman, R. L. 1976. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. U.S.A. 73:208–212.

    Google Scholar 

  19. Landis, S. C., and Mullen, R. J. 1978. The development and degeneration of Purkinje cells inpcd mutant mice. J. Comp. Neurol. 177:125–144.

    Google Scholar 

  20. Ghetti, B., Perry, K. W., and Fuller, R. W. 1988. Serotonin concentration and turnover in cerebellum and other brain regions ofpcd mutant mice. Brain Res. 458:367–371.

    Google Scholar 

  21. Triarhou, L. C., and Ghetti, B. 1991. Serotonin-immunoreactivity in the cerebellum of two neurological mutant mice and the corresponding wild-type genetic stocks. J. Chem. Neuroanat. 4:421–428.

    Google Scholar 

  22. Sotelo, C., and Alvarado-Mallart, R. M. 1987. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20:1–22.

    Google Scholar 

  23. Triarhou, L. C., Low, W. C., and Ghetti, B. 1987. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat. Embryol. (Berl.) 176:145–154.

    Google Scholar 

  24. Sotelo, C., and Alvarado-Mallart, R. M. 1986. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc. Natl. Acad. Sci. USA 83:1135–1139.

    Google Scholar 

  25. Sotelo, C., and Alvarado-Mallart, R. M. 1987. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature (Lond.) 327:421–423.

    Google Scholar 

  26. Chang, A. C., Triarhou, L. C., Alyea, C. J., Low, W. C., and Ghetti, B. 1989. Developmental expression of polypeptide PEP-19 in cerebellar cell suspensions transplanted into the cerebellum ofpcd mutant mice. Exp. Brain Res. 76:639–645.

    Google Scholar 

  27. Triarhou, L. C., Low, W. C., and Ghetti, B. 1989. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei ofpcd mutant mice: Rationale and histochemical organization. Soc. Neurosci. Abstr. 15:10.

    Google Scholar 

  28. Björklund, A., Schmidt, R. H., and Stenevi, U. 1980. Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res. 212:39–45.

    Google Scholar 

  29. Steinbusch, H. W. M., and Tilders, F. J. H. 1987. Immunohistochemical techniques for light-microscopical localization of dopamine, noradrenaline, adrenaline, serotonin and histamine in the central nervous system. Pages 125–166,in Steinbusch, H. W. M. (ed.), Monoaminergic Neurons: Light Microscopy and Ultrastructure, John Wiley, Chichester.

    Google Scholar 

  30. Enderlin, S., Norman, A. W., and Celio, M. R. 1987. Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system. Anat. Embryol. (Berl.) 177:15–28.

    Google Scholar 

  31. Kosofsky, B. E., and Molliver, M. E. 1987. The serotoninergic innervation of cerebral cortex: Different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1:153–168.

    Google Scholar 

  32. Sotelo, C., and Alvarado-Mallart, R. M. 1985. Cerebellar transplants: Immunocytochemical study of the specificity of Purkinje cell inputs and outputs. Pages 205–215,in Björklund, A., and Stenevi, U. (eds.), Neural grafting in the mammalian C.N.S., Elsevier, Amsterdam.

    Google Scholar 

  33. Reier, P. J., Houle, J. D., Jakeman, L., Winialski, D., and Tessler, A. 1988. Transplantation of fetal spinal cord tissue into acute and chronic hemisection and contusion lesions of the adult rat spinal cord. Prog. Brain Res. 78:173–179.

    Google Scholar 

  34. Nilsson, O. G., Kalén, P., Rosengren, E., and Björklund, A. 1990. Acetylcholine release from intrahippocampal septal grafts is under control by the host brain: a microdialysis study. Prog. Brain Res. 82:321–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Morris H. Aprison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triarhou, L.C., Low, W.C. & Ghetti, B. Serotonin fiber innervation of cerebellar cell suspensions intraparenchymally grafted to the cerebellum ofpcd mutant mice. Neurochem Res 17, 475–482 (1992). https://doi.org/10.1007/BF00969895

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969895

Key Words

Navigation