Advertisement

Siberian Mathematical Journal

, Volume 15, Issue 3, pp 491–495 | Cite as

On the boundedness of the trajectories of phase systems

  • G. A. Leonov
Notes

Keywords

Phase System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. A. Barbashin and V. A. Tabueva, Dynamical Systems with a Cylindrical Phase Space [in Russian], Nauka, Moscow (1969).Google Scholar
  2. 2.
    V. A. Yakubovich, “Solution of certain matrix inequalities encountered in control theory,” Dokl. Akad. Nauk SSSR,143, No. 7, 1304–1307 (1962).Google Scholar
  3. 3.
    V. M. Popov, Hyperstability of Control Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  4. 4.
    Z. S. Batalova, “Rotor motions under an external harmonic force,” Mekhan. Tverd. Tela, No. 2, 66–73 (1967).Google Scholar
  5. 5.
    A. Moraru, “Nonlinear vibrations during the starting of synchronous machines with a pulsating torque,” in: Applications of the Theory of Nonlinear Oscillations in Electrical Engineering and Electronics, Proceedings of the Fifth International Conference on Nonlinear Oscillations [in Russian], Vol. 4, Izd. AN UkrSSR, Kiev (1970), pp. 367–384.Google Scholar
  6. 6.
    A. Moraru, “Demarrage et marche du micromoteur synchrone monophasé,” Rev. Scitechn. Electrotechnique et Energetique (Bucarest), No. 4, 549–562 (1967).Google Scholar
  7. 7.
    G. A. Leonov, “On the stability of phase systems,” Sib. Matem. Zh.,15, No. 1, 49–60 (1974).Google Scholar
  8. 8.
    E. Noldus, “On the stability of systems having several equilibrium states,” Appl. Sci. Res.,21, No. 3-4, 219–233 (1969).Google Scholar
  9. 9.
    V. A. Yakubovich, “Absolute stability of nonlinear control systems in critical cases, III.” Avtomat. i Telemekhan., No. 5, 601–612 (1964).Google Scholar
  10. 10.
    M. V. Kapranov, “The locking band in phase-locked frequency control,” Radiotekhnika, No. 12, 37–52 (1956).Google Scholar
  11. 11.
    W. J. Gruen, “Theory of AFC synchronization,” Proc. Inst. Radio Engrs.,41, No. 8, 1043–1048 (1953).Google Scholar
  12. 12.
    L. N. Belyustina, “Study of a nonlinear system of phase-locked frequency control,” Radiofizika,2, No. 2, 277–292 (1959).Google Scholar
  13. 13.
    T. J. Rey, “Automatic phase control: theory design,” Proc. Inst. Radio Engrs.,48, No. 10, 1760–1771 (1960).Google Scholar
  14. 14.
    M. Brunk, “Der Fangbereich von Nachlaufsynchronisationschaltung mit Sinusförmiger Charakteristik des Phasendiskriminators,” Arch. der Elektr. Übertrag.,19, No. 12, 649–663 (1965).Google Scholar
  15. 15.
    N. N. Bautin, “Qualitative study of an equation of the theory of phase-locked frequency control,” Prikl. Matem. i Mekh.,34, No. 5, 850–860 (1970).Google Scholar
  16. 16.
    Yu. N. Bakaev, “Study of a television synchronization system with lag,” Radiotekhnika i Élektronika, No. 2, 227–236 (1958).Google Scholar
  17. 17.
    N. A. Gubar', “Study of a piecewise-linear dynamical system with three parameters,” Prikl. Matem. i Mekh.,25, No. 6, 1011–1023 (1961).Google Scholar
  18. 18.
    B. I. Shakhtarin, “Study of a piecewise-linear system of phase-locked frequency control,” Radiotekhnika i Élektronika, No. 8, 1415–1424 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • G. A. Leonov

There are no affiliations available

Personalised recommendations