Skip to main content
Log in

Endogenous excitatory amino acid release from brain slices and astrocyte cultures evoked by trimethyltin and other neurotoxic agents

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Trimethyltin (TMT) is a toxic alkyltin compound that is known to produce neuronal necrosis in the CNS. The present study examined the effects of TMT on the release of excitatory amino acids (EAA) from cortical slices prepared from adult and aged (24 months old) rats. The calcium dependence of TMT-induced EAA efflux was evaluated and compared to other neurotoxic agents. The actions of TMT were also evaluated in an astrocyte culture model to assess glial contributions to TMT-induced EAA efflux. TMT (10–1000 μM) evoked a dose-related increase in GLU and ASP efflux during a 30 min incubation period and this efflux was sustained or slightly higher during a 15 min recovery period. TMT-stimulated GLU efflux was not altered in aged rats. TMT-induced GLU efflux was significantly reduced by removing extracellular calcium and including 10 μM EGTA in the incubation media. Calcium channel blockers (nifedipine, verapamil, flunarizine, amiloride, neomycin) and MK-801 did not significantly attenuate TMT-induced GLU efflux. Diltiazem (25 μM) produced modest but inconsistent reductions in TMT-induced GLU efflux from brain slices, and significantly inhibited the leakage of lactate dehydrogenase (LDH) from TMT-treated astrocyte cultures. TMT did not increase GLU efflux from glial cultures during a 30 min incubation period, but did significantly elevate GLU efflux during the 15 min recovery period. TMT evoked the release of EAA by both calcium dependent and independent mechanisms in brain slices. TMT at high concentrations also produced a delayed increase in glial GLU efflux. These studies suggest that excitotoxic mechanisms may contribute to TMT-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, D. W. 1992. Excitotoxic cell death. J. Neurobiol. 23:1261–1276.

    PubMed  Google Scholar 

  2. Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212.

    PubMed  Google Scholar 

  3. Dagani, F. and Erecińska, M. 1987. Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes. J. Neurochem. 49:1229–1240.

    PubMed  Google Scholar 

  4. Dickie, B. G. M., Lewis, M. J., and Davies, J. A. 1992. NMDA-induced release of nitric oxide potentiates aspartate overflow from cerebellar slices. Neurosci. Lett. 138:145–148.

    PubMed  Google Scholar 

  5. Volterra, A., Trotti, D., Cassutti, P., Tromba, C., Saluaggio, A., Melcangi, R. C., and Racagni, G. 1992. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J. Neurochem. 59:600–606.

    PubMed  Google Scholar 

  6. Murphy, T. H., Schnaar, R. L., and Coyle, J. T. 1990. Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4:1624–1633.

    PubMed  Google Scholar 

  7. Turner, T. J., Adams, M. E., and Dunlap, K. 1992. Calcium channels coupled to glutamate release identified by ω-Aga-IVA. Science 258:310–313.

    PubMed  Google Scholar 

  8. Lipton, S. A. 1991. Calcium channel antagonists in the prevention of neurotoxicity. Advances in Pharmacol. 22:271–297.

    Google Scholar 

  9. Brown, A. W., Aldridge, W. N., Street, B. W., and Verschoyle, R. D. 1979. The behavioral and neuropathologic sequelae of intoxication by trimethyltin compounds in the rat. Am. J. Pathol. 97:59–82.

    PubMed  Google Scholar 

  10. Chang, L. W. 1986. Neuropathology of trimethyltin: A proposed pathogenetic mechanism. Fundam. Appl. Toxicol. 6:217–232.

    PubMed  Google Scholar 

  11. Balaban, C. D., O'Callaghan, J. P., and Billingsky, M. L. 1988. Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neurontypic and gliotypic proteins. Neuroscience 26:337–361.

    PubMed  Google Scholar 

  12. Naalsund, L. U. and Fonnum, F. 1986. The effect of trimethyltin on three glutamergic and gabaergic transmitter parameters in vitro: High affinity uptake, release and receptor binding. Neurotoxicology 7:53–62.

    Google Scholar 

  13. Wilson, W. E., Hudson, P. M., Kanamatsu, T., Walsh, T. J., Tilson, H. A., Hong, J. s., Marenpot, R. R., and Thompson, M. 1986. Trimethyltin-induced alterations in brain amino acids, amines, and amine metabolites: Relationship to hyperammonemia. Neurotoxicology 7:63–74.

    Google Scholar 

  14. Hikal, A. H., Lipe, G. W., Slikker, W., Jr., Scallet, A. C., Ali, S. F., and Newport, G. D. 1988. Determination of amino acids in different regions of the rat brain. Application to the acute effects of tetrahydrocannabinol (THC) and trimethyltin (TMT). Life Sci. 42:2029–2035.

    PubMed  Google Scholar 

  15. Brodie, M. E., Opacka-Juffry, J., Peterson, D. W., and Brown, A. W. 1990. Neurochemical changes in hippocampal and caudate dialysates associated with early trimethyltin neurotoxicity in rats. Neurotoxicology 11:35–46.

    PubMed  Google Scholar 

  16. Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S., and Waniewski, R. A. 1990. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10: 1583–1591.

    PubMed  Google Scholar 

  17. Levi, G., and Patrizio, M. 1992. Astrocyte heterogeneity: Endogenous amino acid levels and release evoked by non-N-methyl-D-aspartate receptor agonists and by potassium-induced swelling in type-1 and type-2 astrocytes. J. Neurochem. 58:1943–1952.

    PubMed  Google Scholar 

  18. Aschner, M., Gannon, M., and Kimelberg, H. K. 1992. Interactions of trimethyltin (TMT) with rat primary astrocyte cultures: altered uptake and efflux of rubidium, L-glutamate and D-aspartate. Brain Res. 582:181–185.

    PubMed  Google Scholar 

  19. Kvamme, E. 1983. Ammonia metabolism in the CNS. Prog. Neurobiol. 20:109–132.

    PubMed  Google Scholar 

  20. Dawson, R., Jr., Wallace, D. R., and Meldrum, M. J. 1989. Endogenous glutamate release from frontal cortex of adult and aged rats. Neurobiol. Aging 10:665–668.

    PubMed  Google Scholar 

  21. Wallace, D. R., and Dawson, R., Jr. 1992. Ammonia regulation of phosphate-activated glutaminase displays regional variation and impairment in the brain of aged rats. Neurochem. Res. 17:1113–1122.

    PubMed  Google Scholar 

  22. Zelezna, B., Rydzewski, B., Lu, D., Olson, J. A., Shiverick, K. T., Tang, W., Sumners, C., and Raizada, M. K. 1992. Angiotensin-II induction of plasminogen activator inhibitor-1 gene expression in astroglial cells of normotensive and spontaneously hypertensive rat brain. Mol. Endo. 6:2009–2017.

    Google Scholar 

  23. Dawson, R., Jr., and Wallace, D. R. 1992. Kainic acid-induced seizures in aged rats: Neurochemical correlates. Brain. Res. Bull. 29:459–468.

    PubMed  Google Scholar 

  24. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  25. Dawson, R., Jr., and Wallace, D. R. 1992. Taurine content in tissues from aged Fisher 344 rats. Age 15:73–81.

    Google Scholar 

  26. Wills, E. D. 1987. Evaluation of lipid peroxidation in lipids and biological membranes. Pages 127–152,in Snell, K. and Mullock, B. (eds.), Biochemical toxicology: a practical approach, IRL Press, Oxford.

    Google Scholar 

  27. Dixon, W. J., and Massey, F. J., Jr. 1969. Introduction to statistical analysis, McGraw-Hill, New York.

    Google Scholar 

  28. Wallenstein, S., Zucker, C. L., and Fleiss, J. L. 1980. Some statistical methods useful in circulation research. Circ. Res. 47:1–9.

    PubMed  Google Scholar 

  29. Cousin, M. A., Nicholls, D. G., and Pocock, J. M. 1993. Flunarizine inhibits both calcium-dependent and-independent release of glutamate from synaptosomes and cultured neurones. Brain Res. 606:227–236.

    PubMed  Google Scholar 

  30. Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634.

    PubMed  Google Scholar 

  31. Murphy, S. N., Thayer, S. A., and Miller, R. J. 1987. The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J. Neurosci. 7:4145–4158.

    PubMed  Google Scholar 

  32. Patel, M., Ardelt, B. K., Yim, G. K. W., and Isom, G. E. 1990. Interaction of trimethyltin with hippocampal glutamate. Neurotoxicology 11:601–608.

    PubMed  Google Scholar 

  33. Manev, H., Bertolino, M., and DeErausquin, G. 1990. Amiloride blocks glutamate-operated cationic channels and protects neurons in culture from glutamate-induced death. Neuropharmacology 29: 1103–1110.

    PubMed  Google Scholar 

  34. Komulainen, H., and Bondy, S. C. 1987. Increased free intrasynaptosomal Ca2+ by neurotoxic organometals: distinctive mechanisms. Toxicol. Appl. Phamacol. 88:77–86.

    Google Scholar 

  35. Sanchez-Prieto, J., Sihra, T. S., and Nicholls, D. G. 1987. Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes. J. Neurochem, 49:58–64.

    PubMed  Google Scholar 

  36. Nicholls, D. G. 1993. The glutamatergic nerve terminal. Eur. J. Biochem 212:613–631.

    PubMed  Google Scholar 

  37. Bernath, S. 1992. Calcium-independent release of amino acid transmitters: fact or artifact? Prog. Neurobiol. 38:57–91.

    PubMed  Google Scholar 

  38. Stine, K. E., Reiter, L. W., and LeMasters, J. J. 1988. Alkytin inhibition of ATPase activities in tissue homogenates and subcellular fractions from adult and neonatal rats. Toxicol. Appl. Pharmacol. 94:394–406.

    PubMed  Google Scholar 

  39. Aschner, M., and Aschner, J. L. 1992. Cellular and molecular effects of trimethyltin and triethyltin: relevance to organotin neurotoxicity. Neurosci. Biobehav. Res. 16:427–35.

    Google Scholar 

  40. Ali, S., LeBel, C. P., and Bondy, S. C. 1992. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648.

    PubMed  Google Scholar 

  41. Amoroso, S., Sensi, S., DiRenzo, G., and Annunziato, L. 1993. Inhibition of the Na+−Ca++ exchanger enhances anoxia and glucopenia-induced [3H]aspartate release in hippocampal slices. J. Pharmacol. Exp. Ther. 264:515–520.

    PubMed  Google Scholar 

  42. Kleyman, T. R., and Cragoe, E. J. 1988. Amiloride and its analogues as tools in the study of ion transport. J. Membrane Biol. 105:1–21.

    Google Scholar 

  43. Saransaari, P., and Oja, S. S. 1992. Release of GABA and taurine from brain slices. Prog. Neurobiol. 38:455–482.

    PubMed  Google Scholar 

  44. Patterson, T. A., Eppler, B., and Dawson, R. 1994. Mechanisms of trimethyltin-evoked glutamate (GLU) efflux from rat cortical slices. Soc. Neurosci. Abst. 20:274.

    Google Scholar 

  45. Wallace, D. R., and Dawson, R. 1990. Effect of age and MSG treatment on neurotransmitter content in brain regions from male F344 rats. Neurochem. Res. 15:889–898.

    PubMed  Google Scholar 

  46. Cobo, M., Exposito, I., Porras, A., and Mora, F. 1992. Release of amino acid neurotransmitters in different cortical areas of conscious adult and aged rats. Neurobiol. Aging 13:705–709.

    PubMed  Google Scholar 

  47. Sanchez-Prieto, J., Herrero, I., Miras-Portugal, M. T., and Mora, F. 1994. Unchanged exocytotic release of glutamic acid in cortex and neostriatum of the rat during aging. Brain Res. Bull. 33:357–359.

    PubMed  Google Scholar 

  48. Palmer, A. M., Robichaud, P. J., and Reiter, C. T. 1994. The release and uptake of excitatory amino acids in rat brain: effects of aging and oxidative stress. Neurobid. Aging 15:103–111.

    Google Scholar 

  49. Kirzinger, S. S., and Fonda, M. L. 1978. Glutamine and ammonia metabolism in the brains of senescent mice. Exp. Geront. 13:255–261.

    Google Scholar 

  50. Gibson, G. E., and Peterson, C. 1987. Calcium and the aging nervous system. Neurobiol. Aging 8:329–343.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, R., Patterson, T.A. & Eppler, B. Endogenous excitatory amino acid release from brain slices and astrocyte cultures evoked by trimethyltin and other neurotoxic agents. Neurochem Res 20, 847–858 (1995). https://doi.org/10.1007/BF00969697

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969697

Key Words

Navigation