Skip to main content
Log in

Change in fluidity of brain endoplasmic reticulum membranes by oxygen free radicals: A protective effect of stobadine, α-tocopherol acetate, and butylated hydroxytoluene

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effect of various oxygen free radical generating systems and an oxidant H2O2 on brain endoplasmic reticulum (ER) membrane fluidity was examined using fluorescent membrane probe 1,6-diphenyl-1,3,5-hexatriene, DPH. The relative potency of free radical generating systems to decrease membrane fluidity increased in this order: FeCl3-EDTA, FeSO4-EDTA, FeSO4-EDTA/hydrogen peroxide. Potency to decrease membrane fluidity correlated well with these systems' potencies to induce lipid peroxidation, as detected by conjugated diene formation. Treatment of ER membranes with H2O2 had no effect on fluidity or conjugated diene formation. Using the two most potent free radical generating systems, FeSO4-EDTA and FeSO4-EDTA/hydrogen peroxide, a protective effect of the novel antihypoxic and antiarrhytmic drug stobadine was tested. Stobadine and two well-known antioxidants, α-tocopherol acetate and butylated hydroxytoluene, demonstrated the ability to prevent free radical induced alterations in ER membrane fluidity. These results provide new evidence of stobadine's protective effect on membranes attacked by oxygen free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, E. D., and Braughler, J. M. 1993. Free radicals in CNS injury. Pages 81–105, in Waxman, S. G. (ed.), Molecular and Cellular Approaches to the Treatment of Neurological Disease, Raven Press, New York.

    Google Scholar 

  2. Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609–1623.

    PubMed  Google Scholar 

  3. Cancela, J. M., Bralet, J., and Beley, A. 1994. Effects of iron-induced lipid peroxidation and of acidosis on choline uptake by synaptosomes. Neurochem. Res. 19:833–837.

    PubMed  Google Scholar 

  4. Palmeira, C. M., Santos, M. S., Carvalho, A. P., and Oliveira, C. R. 1993. Membrane lipid peroxidation induces changes in γ-[10H]aminobutyric acid transport and calcium uptake by synaptosomes. Brain Res. 609:117–123.

    PubMed  Google Scholar 

  5. Chen, J.-W., Zhang, L., Lian, X., and Hwang, F. 1992. Effect of hydroxyl radical on Na+-K+-ATPase activity of the brain microsomal membranes. Cell Biol. Int. Rep. 16:927–936.

    PubMed  Google Scholar 

  6. Ghosh, C., Dick, R. M., and Ali, S. F. 1993. Lion/ascorbate-induced lipid peroxidation changes membrane fluidity and muscarinic cholinergic receptor binding in rat frontal cortex. Neurochem. Int. 23:479–484.

    PubMed  Google Scholar 

  7. Goel, R., Mishra, O. P., Razdan, B., and Delivoria-Papadopoulos, M. 1993. Modification of NMDA receptor by in vitro lipid peroxidation in fetal guinea pig brain. Neurosci. Lett. 151:219–223.

    PubMed  Google Scholar 

  8. Mishra, O. P., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. C. 1989. Lipid peroxidation as the mechanism of modification of the affinity of the Na+,K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem. Res. 14:845–851.

    PubMed  Google Scholar 

  9. Mishra, O. P., Delivoria-Papadopoulos, M., Cahillane, G., and Wagerle, L. C. 1990. Lipid peroxidation as the mechanism of modification of brain 5′-nucleotidase activity in vitro. Neurochem. Res. 15:237–242.

    PubMed  Google Scholar 

  10. Račay, P., Bezáková, G., Kaplán, P., Lehotský, J., and Mézešová, V. 1994. Alteration in rabbit brain endoplasmic reticulum Ca2+ transport by free oxygen radicals in vitro. Biochem. Biophys. Res. Commun. 199:63–69.

    PubMed  Google Scholar 

  11. Štolc, S., Bauer, V., Beneš, L., and Tichý, M. 1983. Medicine with especially antiarrhytmic and antihypoxic effects and method of its preparing. Cs. Patent 229 067, Swiss Patent 651 754.

  12. Horáková, L., Briviba, K., and Sies, H. 1992. Antioxidant activity of the pyridoindole stobadine in liposomal and microsomal lipid peroxidation. Chem. Biol. Interact. 83:85–93.

    PubMed  Google Scholar 

  13. Štefek, M., Masaryková, M., and Beneš, L. 1992. Inhibition of cumene hydroperoxide-induced, lipid peroxidation by a novel pyridoindole antioxidant in rat liver microsomes. Pharmacol. Toxicol. 70:407–411.

    PubMed  Google Scholar 

  14. Rohn, T. T., Hinds, T. R., and Vincenzi, F. F., 1993. Inhibition of the Ca pump of intact red blood cells by t-butyl hydroperoxide: importance of glutathione peroxidase. Biochim. Biophys. Acta 1153:67–76.

    PubMed  Google Scholar 

  15. Ondriaš, K., Mišik., V., Gergel', D., and Staško, A. 1989. Lipid peroxidation of phosphatidylcholine liposomes depressed by the calcium channel blockers nifedipine and verapamil and by the antiarrhythmic-antihypoxic drug stobadine. Biochim. Biophys. Acta 1003:238–245.

    PubMed  Google Scholar 

  16. Štolc, S., and Horáková, L'. 1988. Effect of stobadine on postischemic lipid peroxidation in the rat brain. Pages 59–63, in Bartko, D., Turčáni, P., and Stern, G., (eds.) New Trends in Clinical Neuropharmacology, John Libbey, London and Paris.

    Google Scholar 

  17. Horakova, L., Ondrejickova, O., Uraz, V., Lukovic, L., and Juranek, I. 1992. Short cerebral ischemia and subsequent reperfusion and treatment with stobadine. Experientia 48:872–874.

    PubMed  Google Scholar 

  18. Horáková, L'., Uraz, V., Ondrejičková, O., Lukovič, L., and Juránek, I. 1991. Effect of stobadine on brain lipid peroxidation induced by incomplete ischemia and subsequent reperfusion. Biomed. Biochim. Acta. 50:1019–1025.

    PubMed  Google Scholar 

  19. Kvaltinová, Z., Lukovič, L., and Štolc, S. 1993. Effect of incomplete ischemia and reperfusion of the rat brain on the density and affinity of α-adrenergic binding sites in the cerebral cortex. Prevention of changes by stobadine and vitamin E. Neuropharmacology 32:785–791.

    PubMed  Google Scholar 

  20. Lukáčová, N., Chavko, M., and Halát, G. 1993. Effect of stobadine on lipid peroxidation and phospholipids in rabbit brain spinal cord after ischaemia. Neuropharmacology 32:235–241.

    PubMed  Google Scholar 

  21. Stefek, M. and Benes, L. 1991. Pyridoindole stobadine is a potent scavenger of hydroxyl radicals. FEBS Lett. 294:264–266.

    PubMed  Google Scholar 

  22. Kagan, V. E., Tsuchiya, M., Serbinova, E., Packer, L., and Sies, H. 1993. Interaction of the pyridoindole stobadine with peroxyl, superoxide and chromanoxyl radicals. Biochem. Pharmacol. 45:393–400.

    PubMed  Google Scholar 

  23. Steenken, S., Sundquist, A. R., Jovanovic, S. V., Crockett, R., and Sies, H. 1992. Antioxidant activity of the pyridoindole stobadine. Pulse radiolytic characterization of one-electron-oxidized stobadine and quenching of singlet molecular oxygen. Chem. Res. Toxicol. 5:355–360.

    PubMed  Google Scholar 

  24. Edelman, A. M., Hunter, D. D., Hendrikson, A. E., and Krebs, E. G., 1985. Subcellular distribution of calcium- and calmodulin- dependent phosphorylating activity in rat cerebral cortex. J. Neurosci. 5:2609–2617.

    PubMed  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall R. J. 1951. Protein measurement with the Folin phenol reagent J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  26. Braughler, J. M., Duncan, L. A., Chase., R. L. 1986. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J. Biol. Chem. 261:10282–102289.

    PubMed  Google Scholar 

  27. Klein, R. A. 1970. The detection of oxidation in liposome preparations. Biochim. Biophys. Acta 210:483–486.

    PubMed  Google Scholar 

  28. Shinitzki, M. and Barenholz, Y. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicethylphosphate. J. Biol. Chem. 249:2652–2657.

    PubMed  Google Scholar 

  29. Shinitzki, M., and Barenholz, Y. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515:367–394.

    PubMed  Google Scholar 

  30. Dinis, T. C. P., Almeida, L. M., and Madeira, V. M. C. 1993. Lipid peroxidation in sarcoplasmic reticulum membranes: effect on functional and biophysical properties. Arch. Biochem. Biophys. 301:256–264.

    PubMed  Google Scholar 

  31. Rice-Evans, C., and Hochstein, P. 1981. Alterations in erythrocyte membrane fluidity by phenylhydrazine-induced peroxidation of lipids. Biochem. Biophys. Res. Commun. 100:1537–1542.

    PubMed  Google Scholar 

  32. Eichenberger, K., Bohni, P., Winterhalter, K. H., Kawato, S., and Richter, C., 1982. Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett. 142:59–62.

    PubMed  Google Scholar 

  33. Curtis, M. T., Gilfor, D., and Farber, J. L. 1984. Lipid peroxidation increases the molecular order of microsomal membranes. Arch. Biochem. Biophys. 235:644–649.

    PubMed  Google Scholar 

  34. Ohta, A., Mohri, T., and Ohyashiki, T. 1989. Effect of lipid peroxidation on membrane-bound Ca2+-ATPase activity of the intestinal brush-border membranes. Biochim. Biophys. Acta 984:151–157.

    PubMed  Google Scholar 

  35. Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74:595–636.

    PubMed  Google Scholar 

  36. Bagchi, M., Prasad, M. R., Engelman, R. M., and Das, D. K., 1989. Effects of free radicals on the fluidity of myocardial membranes. Free Radic. Res. Commun. 7:375–380.

    PubMed  Google Scholar 

  37. Block, E. R., 1991. Hydrogen peroxide alters the physical state and function of the plasma membrane of pulmonary artery endothelial cell. J. Cell. Physiol. 146:362–369.

    PubMed  Google Scholar 

  38. Su, Z., Yan, X.-D., Li., Y.-J., and Chen, X. 1993. Effects of hydrogen peroxide on membrane fluidity and Ca2+-transporting ATPase activity of rabbit myocardial sarcoplasmic reticulum. Acta Pharmacol. Sinica 14:393–396.

    Google Scholar 

  39. Watanabe, H., Kobayashi, A., Yamamoto, T., Suzuki, S., Hayashi, H., and Yamazaki, N. 1990. Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. Free Rad. Biol. Med. 9:507–514.

    PubMed  Google Scholar 

  40. Nalini, S., Ahmed Ibrahim, S. A., and Balasubramanian K. A. 1993. Effect of oxidant exposure on monkey intestinal brush-border membrane. Biochim. Biophys. Acta 1147:169–176.

    PubMed  Google Scholar 

  41. Yamaguchi, T., Fujita, Y., Kuroki, S., Ohtsuka, K., and Kimoto, E. 1983. A study on the reaction of human erythrocytes with hydrogen peroxide. J. Biochem. 94:379–386.

    PubMed  Google Scholar 

  42. Hicks, M. and Gebicki, J. M., 1981. Inhibition of peroxidation in linoleic acid membranes by nitroxide radicals, butylated hydroxytoluene, and α-tocopherol. Arch. Biochem. Biophys. 210:56–63.

    PubMed  Google Scholar 

  43. Sies, H., Stahl, W., and Sundquist A. R. 1992. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann. N. Y. Acad. Sci. 669:7–20.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplán, P., Račay, P., Lehotský, J. et al. Change in fluidity of brain endoplasmic reticulum membranes by oxygen free radicals: A protective effect of stobadine, α-tocopherol acetate, and butylated hydroxytoluene. Neurochem Res 20, 815–820 (1995). https://doi.org/10.1007/BF00969693

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969693

Key Words

Navigation