Skip to main content
Log in

Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: A multinuclear NMR study

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diffusion-weighted in vivo1H-NMR spectroscopy of F98 glioma cells embedded in basement membrane gel threads showed that the initial cell swelling to about 180% of the original volume induced under hypotonic stress was followed by a regulatory volume decrease to nearly 100% of the control volume in Dulbecco's modified Eagle's medium (DMEM) but only to 130% in Krebs-Henseleit buffer (KHB, containing only glucose as a substrate) after 7 h. The initial cell shrinkage to approx. 70% induced by the hypertonic stress was compensated by a regulatory volume increase which after 7 h reached almost 100% of the control value in KHB and 75% in DMEM.1H-,13C-and31P-NMR spectroscopy of perchloric acid extracts showed that these volume regulatory processes were accompanied by pronounced changes in the content of organic osmolytes. Adaptation of intra- to extracellular osmolarity was preferentially mediated by a decrease in the cytosolic taurine level under hypotonic stress and by an intracellular accumulation of amino acids under hypertonic stress. If these solutes were not available in sufficient quantities (as in KHB), the osmolarity of the cytosol was increasingly modified by biosynthesis of products and intermediates of essential metabolic pathways, such as alanine, glutamate and glycerophosphocholine in addition to ethanolamine. The cellular nucleoside triphosphate level measured by in vivo31P-NMR spectroscopy indicated that the energy state of the cells was more easily sustained under hypotonic than hypertonic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chamberlain, M. E., and Strange, K. 1989. Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257:C159-C173.

    PubMed  Google Scholar 

  2. Hoffmann, E. K., and Simonson, L. O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–382.

    PubMed  Google Scholar 

  3. Lang, F., Ritter, M., Völkl, H., and Häussinger, D. 1993. Cell volume regulatory mechanims—an overview, Pages 1–32,in Lang, F., and Häussinger, D. (eds.), Adv. Comp. Environ. Physiol. Vol. 14, Springer-Verlag, Berlin.

    Google Scholar 

  4. Syková, E. 1992. Ionic and volume changes in the microenvironment of nerve and receptor cells. Progr. Sens. Physiol. 13:1–167.

    Google Scholar 

  5. Cserr, H. F., and Patlak, C. S. 1991. Regulation of brain volume under isosmotic and anisosmotic conditions, Pages 61–80,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.

    Google Scholar 

  6. Kimelberg, H. K., O'Connor, E. R., and Kettenmann, H. 1993. Effects of swelling on glial cell function, Pages 157–186,in Lang, F. and Häussinger, D. (eds.), Adv. Comp. Environ. Physiol. Vol. 14, Springer-Verlag, Berlin.

    Google Scholar 

  7. Pollock, A. S., and Arieff, A. I. 1980: Abnormalities of cell volume regulation and their functional consequences. Am. J. Physiol. 239:F195-F205.

    PubMed  Google Scholar 

  8. Flynn, C. J., Farooqui, A. A., and Horrocks, L. A. 1994. Ischemia and hypoxia, Pages 783–795,in Siegel, G. J. Agranoff, B. W., Albers, R. W., and Molinoff, P. B. (eds.), Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th Ed., Raven Press, New York.

    Google Scholar 

  9. Jakubovicz, D. E., Grinstein, S., and Klip, A. 1987. Cell swelling following recovery from acidification in C6 glioma cells: an in vitro model of post-ischemic brain edema. Brain Res. 435:138–146.

    PubMed  Google Scholar 

  10. Walz, W., Klimaszweski, A., and Paterson, I. A. 1993. Glial swelling in ischemia: A hypothesis. Dev. Neurosci. 15:216–225.

    PubMed  Google Scholar 

  11. Kinne, R. K. H. 1993. The role of organic osmolytes in osmoregulation: from bacteria to mammals. J. Exp. Zool. 265:346–355.

    PubMed  Google Scholar 

  12. Law, R. O., and Burg, M. B. 1991. The role of organic osmolytes in the regulation of mammalian cell volume, Pages 189–225,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.

    Google Scholar 

  13. McCarthy, N. A., and O'Neil, R. G. 1992. Calcium signaling in cell volume regulation. Physiol. Rev. 72:1037–1061.

    PubMed  Google Scholar 

  14. Burg, M. B. 1994. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. J. Exp. Zool. 268:171–175.

    PubMed  Google Scholar 

  15. Heilig, C. W., Brenner, R. M., Yu, A. S. L., Kone, B. C., and Gullans, S. R. 1990. Modulation of osmolytes in MDCK cells by solutes, inhibitors, and vasopressin. Am. J. Physiol. 259:F653–659.

    PubMed  Google Scholar 

  16. Lohr, J. W., and Grantham, J. J. 1991. Inorganic ions and volume regulation in kidney tubules under anisosmotic conditions, Pages 61–80,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.

    Google Scholar 

  17. Zablocki, K., Miller, S. P. F., Garcia-Perez, A., and Burg, M. B. 1991. Accumulation of glycerophosphocholine (GPC) by renal cells: Osmotic regulation of GPC: choline phosphodiesterase. Proc. Natl. Acad. Sci. U.S.A. 88:7820–7824.

    PubMed  Google Scholar 

  18. Beetsch, J. W., and Olson, J. E. 1993. Taurine transport in rat astrocytes adapted to hyperosmotic stress. Brain Res. 613:10–15.

    PubMed  Google Scholar 

  19. Kimelberg, H. K. 1991. Swelling and volume control in brain astroglial cells, Pages 81–117,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.

    Google Scholar 

  20. Law, R. O. 1994. Regulation of mammalian brain cell volume. J. Exp. Zool. 268:90–96.

    PubMed  Google Scholar 

  21. Strange, K., and Morrison, R. 1992. Volume regulation during recovery from chronic hypertonicity in brain glial cells. Am. J. Physiol. 263:C412-C419.

    PubMed  Google Scholar 

  22. Heilig, C. W., Stromski, M. E., Blumenfeld, J. D., Lee, J. P., and Gullans, S. R. 1989. Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am. J. Physiol. 257:F1108-F1116.

    PubMed  Google Scholar 

  23. Lien, Y. H. H., Shapiro, J. I., and Chan, L. 1990. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85:1427–1435.

    PubMed  Google Scholar 

  24. Law, R. O. 1994. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim. Biophys. Acta 1221:21–28.

    PubMed  Google Scholar 

  25. Pasantes-Morales, H., and Schousboe, A. 1988. Volume regulation in astrocytes: a role for taurine as osmoeffector. J. Neurosci. Res. 20:505–509.

    Google Scholar 

  26. Solis, J. M., Herranz, A. S., Herreras, O., Lerma, J., and Martin del Rio, M. 1988. Does taurine act as an osmoregulatory substance in rat brain? Neurosci. Lett. 91:53–58.

    PubMed  Google Scholar 

  27. Wade, J. V., Olson, J. P., Samson, F. E., Nelson, S. R., and Pazdernik, T. L. 1988. A possible role for taurine in osmoregulation within the brain. J. Neurochem. 51:740–745.

    PubMed  Google Scholar 

  28. Isaacks, R. E., Bender, A. S., Kim, C. Y., Prieto, N. M., and Norenberg, M. D. 1994. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem. Res. 19:331–338.

    PubMed  Google Scholar 

  29. Strange, K., Morrsion, R., Shrode, L., and Putnam, R. 1993. Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265:C244-C256.

    PubMed  Google Scholar 

  30. Verbalis, J. G., and Gullans, S. R. 1991. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 567:274–282.

    PubMed  Google Scholar 

  31. Fishman, R. A., Reiner, M., and Chan, P. H. 1977. Metabolic changes associated with iso-osmotic regulation in brain cortex slices. J. Neurochem. 28:1061–1067.

    PubMed  Google Scholar 

  32. Häussinger, D., Gerok, W., and Lang, F., 1993. Cell volume and hepatic metabolism, Pages 33–66,in Lang, F., and Häussinger, D., (eds.), Adv. Comp. Environ. Physiol. Vol. 14, Springer-Verlag, Berlin.

    Google Scholar 

  33. Olson, J. E., Evers, J. A., and Holtzman, D. 1992. Astrocyte volume regulation and ATP and phosphocreatine concentrations after exposure to salicylate, ammonium, and fatty acids. Metab. Brain Dis. 7:183–196.

    PubMed  Google Scholar 

  34. Ko, L., Koestner, A., and Wechsler, W. 1980. Morphogical characterization of nitrosurea-induced glioma cell lines and clones. Acta Neuropathol. 51:23–31.

    PubMed  Google Scholar 

  35. Ko, L., Koestner, A., and Wechsler, W. 1980. Characterization of cell cycle and biological parameters of transplantable glioma cell lines and clones. Acta Neuropathol. 51:107–111.

    PubMed  Google Scholar 

  36. Daly, P. F., Lyon, R. C., Straka, E. J., and Cohen, J. S. 1988.31P-NMR of human cancer cells proliferating in a basement membrane gel. FASEB J. 2:2596–2604.

    PubMed  Google Scholar 

  37. Goa, J. 1953. A micro biuret method for protein determination. Scand. J. Clin. Lab. Invest. 5:218–222.

    PubMed  Google Scholar 

  38. Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R. 1983. An improved sequence for broadband decoupling: WALTZ-16. J. Magn. Reson. 52:335–338.

    Google Scholar 

  39. Gillies, R. J., Alger, R. J., den Hollander, J. A., and Shulman, R. G. 1982. Intracellular pH measured by NMR: methods and results, Pages 79–104,in Nuccitelli, R., and Deamer, D. W. (eds.), Intracellular pH: its Measurement, Regulation, and Utilization in Cellular Functions, Alan R. Liss, Inc., New York.

    Google Scholar 

  40. Fabry, M. E., and San George, R. C., 1983. Effect of magnetic susceptibility on nuclear magnetic resonance signals arising from red cells: a warning. Biochemistry 22:4119–4125.

    PubMed  Google Scholar 

  41. Neeman, M., Jarrett, K. A., Sillerud, L. O., and Freyer, J. P. 1991. Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Canc. Res. 51:4072–4079.

    Google Scholar 

  42. van Zijl, P. C. M., Monnen, C. T. W., Faustino, P., Pekar, J., Kaplan, O., and Cohen, J. S. 1991. Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 88:3228–3232.

    PubMed  Google Scholar 

  43. Niendorf, T., Flögel, U., Norris, D. G., and Leibfritz, D. 1993. Intracellular water diffusion in glioma and neuroblastoma cells, Page 600,in Book of Abstracts, 12th Annual Meeting, Society of Magnetic Resonance, New York.

  44. Stejskal, E. O., and Tanner, J. E. 1988. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42:288–292.

    Google Scholar 

  45. Halliday, K. R., Fenoglio-Preiser, C., and Sillerud, L. O. 1988. Differentiation of human tumors from nonmalignant tissue by natural-abundance13C-NMR spectroscopy. Magn. Reson. Med. 7: 384–411.

    PubMed  Google Scholar 

  46. Hamilton, J. A., and Morisett, J. D. 1986. Nuclear magnetic resonance studies of lipoproteins. Methods Enzymol. 128:472–515.

    PubMed  Google Scholar 

  47. Ribeiro, A. A., and Dennis, E. A. 1976.13C nuclear magnetic resonance relaxation studies on the structure of mixed micelles of the nonionic surfactant Triton X-100 and phospholipids. J. Colloid Interface Sci. 55:94–101.

    Google Scholar 

  48. Pasantes-Morales, H., Alavez, S., Olea, R. S., and Morán, J. 1993. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem. Res. 18:445–452.

    PubMed  Google Scholar 

  49. Lien, Y. H. H., Zhou, H. Z., Job, C., Barry, J. A., and Gillies, R. J. 1992. In vivo NMR study of early cellular responses to hyperosmotic shock in cultured glioma cells. Biochimie 74:931–939.

    PubMed  Google Scholar 

  50. Natke, E. 1990. Cell volume regulation of rabbit cortical collecting tubule in anisotonic media. Am. J. Physiol. 258:F1657-F1665.

    PubMed  Google Scholar 

  51. Rome, L., Grantham, J., Savin, V., Lohr, J., and Lechene, C. 1989. Proximal tubule volume regulation in hyperosmotic media: intracellular K+, Na+, and Cl. Am. J. Physiol. 257:C1093-C1100.

    PubMed  Google Scholar 

  52. Tyler, B. C., and Ribolow, H. 1994. Glycerol phosphorylcholine (GPC) and serine ethanolamine phosphodiester (SEP): evolutionary mirrored metabolites and their potential metabolic roles. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 108:11–20.

    Google Scholar 

  53. Lang, F., Busch, G., Völkl, H., and Häussinger, D. 1994. Lysosomal pH: a link between cell volume and metabolism. Biochem. Soc. Trans. 22:502–505.

    PubMed  Google Scholar 

  54. Meijer, A. J., Gustafson, L. A., Luiken, J. J. F. P., Blommaart, P. J. E., Caro, H. P., van Woerkom, G. M., Spronk, C., and Boon, L. 1993. Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur. J. Biochem. 215:449–454.

    PubMed  Google Scholar 

  55. Bauernschmitt, H. G., and Kinne, R. K. H. 1993. Metabolism of the ‘organic osmolyte’ glycerophosphocholine in isolated rat inner medullary collecting duct cells. II. Regulation by extracellular osmolality. Biochim. Biophys. Acta 1150:25–34.

    PubMed  Google Scholar 

  56. Cala, P., and Grinstein, S. 1988. Coupling between Na+/H+ and Cl/HCO 3 exchange in pH and volume regulation; Pages 201–208,in Grinstein, S. (ed.), Na+/H+ Exchange, CRC Press, Boca Raton.

    Google Scholar 

  57. Lien, Y. H. H., Zhou, H. Z., Lai, L. W., Job, C., and Gillies, R. J. 1993. NMR study of regulatory volume increase in cultured glioma cells: role of Na+/H+-antiporter, Page 1013,in Book of Abstracts, 12th Annual Meeting, Society of Magnetic Resonance, New York.

  58. Parker, C. 1988. Na+/H+ exchange and volume regulation in nonepithelial cells, Pages 179–200in Grinstein S. (ed.), Na+/H+ exchange, CRC Press, Boca Raton.

    Google Scholar 

  59. Munsch, T., and Deitmer, J. W. 1994. Sodium-bicarbonate cotransport current in identified leech glial cells. J. Physiol. (London) 474:43–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom to address reprint requests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flögel, U., Niendorf, T., Serkowa, N. et al. Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: A multinuclear NMR study. Neurochem Res 20, 793–802 (1995). https://doi.org/10.1007/BF00969691

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969691

Key Words

Navigation