Advertisement

Siberian Mathematical Journal

, Volume 11, Issue 4, pp 600–611 | Cite as

Extendable bases in spaces of functions analytic in multicircular domains

  • V. P. Zakharyuta
Article
  • 14 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  2. 2.
    V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables [in Russian], Nauka, Moscow (1964).Google Scholar
  3. 3.
    L. A. Aizenberg and B. S. Mityagin, “Spaces of functions analytic in multicircular domains,” Sibirsk. Matem. Zh.,1, No. 2, 159–170 (1960).Google Scholar
  4. 4.
    G. M. Bezdudnyi, “On the isomorphism and extendability of bases of spaces of functions holomorphic in n-circular domains,” Uch. Zap. MOPI,166, 109–138 (1966).Google Scholar
  5. 5.
    B. S. Mityagin, “A description of the spaces of maximal ideals of two classes of normed rings,” Sibirsk. Matem. Zh.,2, No. 1, 82–88 (1961).Google Scholar
  6. 6.
    V. P. Zakharyuta, “On bases and the isomorphism of spaces of functions analytic in convex domains of several variables,” in: Theory of Functions, Functional Analysis and Its Applications, No. 5 (1967), pp. 5–12.Google Scholar
  7. 7.
    J. M. Whittaker, “Sur les series de base de polynomes quelconques,” Paris (1949).Google Scholar
  8. 8.
    W. F. Newns, “On the representation of analytic functions by infinite series,” Phil. Trans. Roy. Soc., London, Ser. A,245, 429–462 (1959).Google Scholar
  9. 9.
    A. Dynin and B. Mitjagin, “Criterion for nuclearity in terms of approximative dimension,” Bull., Acad. Pol. Sci.,8, No. 8, 535–540 (1960).Google Scholar
  10. 10.
    N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, Interscience, New York (1958).Google Scholar
  11. 11.
    M. A. Naimark, Normed Rings, Moscow (1956).Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • V. P. Zakharyuta

There are no affiliations available

Personalised recommendations