Siberian Mathematical Journal

, Volume 29, Issue 3, pp 510–512 | Cite as

Pontryagin classes of completely geodesic subbundles

  • A. F. Solov'ev


Pontryagin Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Bott, “On a topological obstruction to integrability,” in: Proc. Symp. Pure Math., Vol. 16, Am. Math. Soc., Providence, R. I. (1970), pp. 127–131.Google Scholar
  2. 2.
    J. S. Pasternack, “Foliations and compact Lie groups actions,” Comment. Math. Helv.,46, No. 4, 467–477 (1971).Google Scholar
  3. 3.
    J. Martinet, “Classes caracteristiques des systemes de Pfaff,” Lect. Notes Math.,392, 30–36 (1974).Google Scholar
  4. 4.
    A. M. Naveira, “A classification of Riemannian almost product manifolds,” Rend. Mat. Appl.,3, No. 3, 577–592 (1983).Google Scholar
  5. 5.
    A. F. Solov'ev, “Curvature of a distribution,” Mat. Zametki,35, No. 1, 111–124 (1984).Google Scholar
  6. 6.
    A. Montesinos, “On certain classes of almost periodic structures,” Michigan Math. J.,30, No. 1, 31–36 (1983).Google Scholar
  7. 7.
    S. Nishikawa and H. Sato, “On characteristic classes of riemannian, conformal and projective foliations,” J. Math. Soc. Jpn.,28, No. 2, 223–241 (1976).Google Scholar
  8. 8.
    I. Vaisman, “Conformal foliations,” Kodai Math. J.,2, No. 1, 26–37 (1979).Google Scholar
  9. 9.
    A. Montesinos, “Conformal curvature for the normal bundle of a conformal foliation,” Ann. Inst. Fourier,32, No. 3, 261–274 (1982).Google Scholar
  10. 10.
    A. F. Solov'ev, “Second fundamental form of a distribution,” Mat. Zametki,31, No. 1, 139–146 (1982).Google Scholar
  11. 11.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. I, Nauka, Moscow (1981).Google Scholar
  12. 12.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. II, Nauka, Moscow (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. F. Solov'ev

There are no affiliations available

Personalised recommendations