Skip to main content
Log in

Genes expressed in cortical neurons-chromatin conformation and DNase I hypersensitive sites

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

DNase I sensitivity experiments were performed utilizing DNA probes to genes which are either transcribed in rat cortical neurons (the 68 kDa neurofilament gene and the neuron-specific enolass gene) or are transcriptionally silent (albumin). Results suggest that unlike liver, in which a hierarchy in chromatin conformation exists between transcribed and nontranscribed genes, the majority of protein coding sequences in cortical neurons may be relatively sensitive to nuclease digestion. This supports our previous observation of an increased DNase I sensitivity of total chromatin in cortical neurons. Nuclease sensitivity experiments also revealed the presence of brain-specific DNase I hypersensitive sites associated with the two neuron-specific genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

EDTA:

ethylenediaminetetraacetic acid

EGTA:

ethyleneglycol-bis(β-amino-ethylether)N

N′:

tetra-acetic acid

IAA:

isoamyl alcohol

kb:

kilobase

kDa:

kilodalton

PMSF:

phenylmethylsulfonylfluoride

References

  1. Reeves, R. 1984. Transcriptionally active chromatin. Biochim. Biophys. Acta 782:343–393.

    PubMed  Google Scholar 

  2. Yaniv, M., and Cereghini, S. 1986. Structure of transcriptionally active chromatin. C R C Critical Reviews in Biochem. 21:1–26.

    Google Scholar 

  3. Thoma, F., Koller TH., and Klug, A. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83:403–427.

    PubMed  Google Scholar 

  4. Thomas, J. O., and Thompson, R. J. 1977. Variation in chromatin in two cell types from the same tissue: a short DNA repeat length in cerebral cortex neurons. Cell 10:633–640.

    PubMed  Google Scholar 

  5. Brown, I. R., and Greenwood, P. D. 1982. Chromosomal components in brain cells. Pages 41–69, in Brown, I. R. (ed.), Molecular Approaches to Neurobiology, Academic Press, New York.

    Google Scholar 

  6. Brown, I. R. 1983. The organization of DNA in brain cells. Pages 217–226,in Lajtha, A. (ed.). Handbook of Neurochemistry Volume 5. Plenum Press, New York.

    Google Scholar 

  7. Allan, J., Rau, D. C., Harborne, N., and Gould, H. 1984. Higher order structure in a short repeat length chromatin. J. Cell Biol. 98:1320–1327.

    PubMed  Google Scholar 

  8. Pearson, E. C., Bates, D. L., Prospero, T. D., and Thomas, J. O. 1984. Neuronal nuclei and glial nuclei from mammalian cerebral cortex-nucleosome repeat lengths, DNA content and H1 contents. Eur. J. Biochem. 144:353–360.

    PubMed  Google Scholar 

  9. Ermini, M., and Kuenzle, C. C. 1978. The chromatin repeat length of cortical neurons shortens during early postnatal development. FEBS Letters 90:167–172.

    PubMed  Google Scholar 

  10. Brown, I. R. 1978. Postnatal appearance of a short DNA repeat length in neurons of the cerebral cortex. Biochem. Biophys. Res. Comm. 84:285–292.

    PubMed  Google Scholar 

  11. Greenwood, P. D., Heikkila, J. J., and Brown, I. R. 1982. Developmental changes in chromatin organization in rat cerebral hemisphere neurons and analysis of DNA reassociation kinetics. Neurochem. Res. 7:525–539.

    PubMed  Google Scholar 

  12. Greenwood, P. D., Silver, J. C., and Brown, I. R. 1981. Analysis of histones associated with neuronal and glial nuclei exhibiting divergent DNA repeat lengths. J. Neurochem. 37:498–505.

    PubMed  Google Scholar 

  13. Greenwood, P. D., and Brown, I. R. 1982. Developmental changes in DNase I digestability and RNA template activity of neuronal nuclei relative to the postnatal appearance of short DNA repeat length. Neurochem. Res. 7:965–975.

    PubMed  Google Scholar 

  14. Weintraub, H., and Groudine, M. 1976. Chromosomal subunits in active genes have an altered conformation. Nature 193:848–856.

    Google Scholar 

  15. Ivanov, T. R., and Brown, I. R. 1984. Developmental changes in the synthesis of nonhistone nuclear proteins relative to the appearance of a short nucleosomal DNA repeat length in cerebral hemisphere neurons. Neurochem. Res. 9:1321–1337.

    Google Scholar 

  16. Cestelli, A., Di Liegro, I., Castiglia, D., Gristina, R., Ferraro, D., Salemi, G., and Savettieri, G. 1987. Triiodothyronine-induced shortening of chromatin repeat length in neurons cultured in a chemically defined medium. J. Neurochem. 48:1053–1059.

    PubMed  Google Scholar 

  17. Kunnath, L., and Locker, J 1985. DNase I sensitivity of the rat albumin and alpha-fetoprotein genes. Nucleic Acids Res. 13:115–129.

    PubMed  Google Scholar 

  18. Turcotte, B., Guertin, M., Chevrette, M., LaRue, H., and Belanger, L. 1986. DNase I hypersensitivity and methylation of the 5′-flanking region of the α-fetoprotein gene during developmental and glucocorticoid-induced repression of its activity in rat liver. Nucleic Acids Res. 14:9827–9841.

    PubMed  Google Scholar 

  19. Hilz, H., Wiegers, U., and Adamietz, P. 1975. Stimulation of proteinase K action by denaturing agents: application to the isolation of nucleic acids and the degradation of ‘masked’ proteins. Eur. J. Biochem. 56:103–108.

    PubMed  Google Scholar 

  20. Khandjian, E. W. 1987. Optimized hybridization of DNA blotted and fixed to nitrocellulose and nylon membranes. Biotechnology 5:165–167.

    Google Scholar 

  21. Feinberg, A. P., and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytic Biochem. 132:6–13.

    Google Scholar 

  22. Lewis, S. A., and Cowan, N. J. 1985. Genetics, evolution, and expression of the 68,000-mol-wt neurofilament protein: isolation of a cloned cDNA probe. J. Cell Biol. 100:843–850.

    PubMed  Google Scholar 

  23. Forss-Petter, S., Danielson, P., and Sutcliffe, J. G. 1986. Neuronspecific enolase: complete structure of rat mRNA, multiple transcriptional start sites, and evidence suggesting post-transcriptional control. J. Neurosci. Res. 16:141–156.

    PubMed  Google Scholar 

  24. Babiss, L. E., Bennett, A., Friedman, J. M., and Darnell, J. E. 1986. DNase I-hypersensitive sites in the 5′-flanking region of the rat serum albumin gene: correlation between chromatin structure and transcriptional activity. Proc. Natl. Acad. Sci. U.S.A. 83:6504–6508.

    PubMed  Google Scholar 

  25. Julien, J.-P., Ramachandran, K., and Grosveld, F. 1985. Cloning of a cDNA encoding the smallest neurofilament protein from the rat. Biochim. Biophys. Acta 825:398–404.

    PubMed  Google Scholar 

  26. Sakimura, K., Kushiya, E., Obinata, M., Odani, S., and Takahashi, Y. 1985. Molecular cloning and the nucleotide sequence of cDNA for neuron-specific enolase messenger RNA of rat brain. Proc. Natl. Acad. Sci U.S.A 82:7453–7457.

    PubMed  Google Scholar 

  27. Powell, D. J., Friedman, J. M., Oudette, A. J., Krauter, K. S., and Darnell Jr., J. E. 1984. Transcriptional and posttranscriptional control of specific messenger RNAs in adult and embryonic liver. J. Mol. Biol 179:21–35.

    PubMed  Google Scholar 

  28. Thompson, R. J 1973. Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. J. Neurochem. 21:19–40.

    PubMed  Google Scholar 

  29. Gross, D. S., and Garrard, W. T. 1987. Poising chromatin for transcription. Trends in Biochem. Sci. 12:293–297.

    Google Scholar 

  30. Nahon, J.-L., Venetianer, A., and Sala-Trepat, J. M. 1987. Specific sets of DNase I-hypersensitive sites are associated with the potential and overt expression of the rat albumin and alpha-fetoprotein genes. Proc. Natl. Acad. Sci. U.S.A. 84:2135–2139.

    PubMed  Google Scholar 

  31. Thoma, F., and Koller, TH 1981. Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of non-histone components and histone H1. J. Mol. Biol. 149:709–733.

    PubMed  Google Scholar 

  32. Chikaraishi, D. M. 1979. Complexity of cytoplasmic polyadenylated and nonpolyadenylated rat brain ribonucleic acids. Biochemistry 18:3249–3256.

    PubMed  Google Scholar 

  33. Van Ness, J., Maxwell, I. H., and Hahn, W. E. 1979. Complex population of nonpolyadenylated messenger RNA in mouse brain. Cell 18:1341–1349.

    PubMed  Google Scholar 

  34. Chaudhari, N., and Hahn, W. E. 1983. Genetic expression in the developing brain. Science 220:924–928.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, T.R., Brown, I.R. Genes expressed in cortical neurons-chromatin conformation and DNase I hypersensitive sites. Neurochem Res 14, 129–137 (1989). https://doi.org/10.1007/BF00969627

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969627

Key Words

Navigation