Neurochemical Research

, Volume 14, Issue 2, pp 113–118 | Cite as

Some properties of frog vestibular choline acetyltransferase and acetylcholinesterase

  • I. López
  • G. Meza
Original Articles

Abstract

The amount and some properties of choline acetyltransferase (ChAT) and of acetylcholinesterase (AchE) were investigated in the frog vestibule. Enzyme activities were found to be of the same order of magnitude as in frog nervous tissue and various properties of vestibular ChAT (dependence on pH, chloride and Triton X-100 activation, phosphate sensitivity) and AchE (inhibition by eserine but not by Tetraisopropylpyrophosphoramide) were also similar as those of the homologous central nervous system enzymes. Although the precise localization of ChAT and AchE is not yet certain the efferent neurotransmitter in the vertebrate vestibular sensory periphery is believed to be acetylcholine and thus the enzymes responsible for its synthesis and degradation may participate in regulating inner ear function.

Key Words

Vestibular cholinergic choline acetyltransferase acetylcholinesterase frog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dohlmann, G., Farkashidy, Y., and Salonna, F. 1958. Centrifugal nerve-fibers to the sensory epithelium of the vestibular labyrinth. J. Laryngol. Otol. 72:984–991.PubMedGoogle Scholar
  2. 2.
    Wersäll, J. 1956. Studies on the structure and innervation of the sensory epithelium of the cristae ampullaris in the guinea pig. Acta Oto-laryng. (Stockh.), Supp. 126:1–85.Google Scholar
  3. 3.
    Gleissner, L., and Henrikson, N. C. 1963. Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta Otolaryng. Suppl. 192:90–103.Google Scholar
  4. 4.
    Rossi, M. L., Prigioni, I., Valli, P., and Casella, C. 1980. Activation of the efferent system in the isolated frog labyrinth: effects on the afferent epsps and spike discharge recorded from single fibers of the posterior nerve, Brain Research, 185:127–137.Google Scholar
  5. 5.
    Rossi, M. L., and Sacchi, O. 1982. Effectiveness of some anions in sustaining the efferent inhibition of the frog labyrinth. Brain Research, 223:181–185.Google Scholar
  6. 6.
    Bernard, C. Cochran, S. L., and Precht, W. 1985. Presynaptic actions of cholinergic agents upon the hair cell-afferent fiber synapse in the vestibular labyrinth of the frog. Brain Research; 338:225–236.PubMedGoogle Scholar
  7. 7.
    Caston, J., and Rousell, H., 1984. Curare and the efferent vestibular system, Acta Oto-laryng. (Stockh.), 97:19–26.Google Scholar
  8. 8.
    Guth, P., Norris, C. H., Guth, S. L. Quine, D. B., and Williams, W. H. 1986. Cholinomimetics mimic efferent effects on semicircular canal afferent activity in the frog. Acta Oto-laryng. (Stockh.) 102:194–203.Google Scholar
  9. 9.
    Russell, I. J. 1971. The pharmacology of efferent synapses in the lateral line system of Xenopus leavis. J. Exp. Biol. 54:643–658.PubMedGoogle Scholar
  10. 10.
    Valli, P., Costa, J., and Zucca, G. 1984. Local mechanisms in vestibular receptor control. Acta Oto-laryng. (Stockh.), 97:611–618.Google Scholar
  11. 11.
    Norris, C. H., Housley, G. D., and Williams, W. H. 1988. The acetylcholine receptors of the semicircular canal in the frog (Rana pipiens). Hear. Res. 32:197–206.PubMedGoogle Scholar
  12. 12.
    Flock, A., and Lam, D. 1974. Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature, 249:142–144.PubMedGoogle Scholar
  13. 13.
    Meza, G., López, I., and Ruiz, M. 1984. Possible cholinergic neurotransmission in the cristae ampullares of the chick inner ear. Neurosc. Lett. 49:93–98.Google Scholar
  14. 14.
    Iturbe, A. G., and Meza, G. 1985. Probable localization of GABA and Ach synthesis in the vestibule of streptomycin-treated guinea pigs. Soc. Neurosc. Abst. 11:696.Google Scholar
  15. 15.
    Meza, G., and López, I. 1985. Characterization of cholinergic neurotransmission in the frog vestibule, J. Neurochem. 44:S89c.Google Scholar
  16. 16.
    Dememes, D., Raymond, J., and Sans, A. 1983. Selective retrograde labelling of vestibular efferent neurons with3H-choline, Neuroscience, 8:285–290.PubMedGoogle Scholar
  17. 17.
    Raffi-Jean, O., Lyon, J., and Gacek, R. 1987. Esterase activity in cat vestibular end organs., Arch. Otolaryngol. Head Neck Surg., 113:543–546.PubMedGoogle Scholar
  18. 18.
    Ishii, T., Murakami, Y., and Balogh, K. 1967. Acetylcholinesterase activity in the efferent nerve fibers of the human inner ear. Ann. Otol. 76:69–82.Google Scholar
  19. 19.
    Iurato, S., Luciano, L., Pannese, E. and Reale, E. 1971. Acetylcholinesterase activity in the vestibular sensory areas, Acta Otolaryng. (Stockh.) 71:147–152.Google Scholar
  20. 20.
    Iurato, S., Luciano, L., Pannese, E., and Reale, E. 1971. Histochemical localization of acetylcholinesterase (AchE) activity in the inner ear, Acta Oto-laryng., Supp (Stockh.) 279:1–50.Google Scholar
  21. 21.
    Usami, S., Igarashi, M., and Thompson, G. C. 1987. GABA-like immunoreactivity in the chick vestibular end organs. Brain Research. 418:383–388.PubMedGoogle Scholar
  22. 22.
    Dohlman, G. F. 1960. Histochemical studies of vestibular mechanism. Pages 258–275,in Rasmussen, G. L. and Windle, W. F. (eds.), Neural mechanisms of the auditory and vestibular system, Charles, C. Thomas, Springfield, Ill.Google Scholar
  23. 23.
    Gacek, R. R., Nomura, Y., and Balogh, K. 1965. Acetylcholinesterase activity in the efferent fibers of the statoacoustic nerve. Acta Otolaryngol. (Stockh.), 59:541–553.Google Scholar
  24. 24.
    Hebb, C. O. 1963. Formation, storage and liberation of acetylcholine. Pages 55–58in Koelle, G. B. (ed.), Handbuch der experimentellen Pharmacologie, Vol. 15, Springer-Verlag, New York.Google Scholar
  25. 25.
    Hebb, C. O., and Silver, A. 1956. Choline acetylase in the central nervous system of man and some other mammals. J. Physiol., Lond. 134:718–728.Google Scholar
  26. 26.
    Hebb, C. O., and Whittaker, V. P. 1958. Intracellular distributions of acetylcholine and choline acetylase. J. Physiol. (Lond.), 142:187–196.Google Scholar
  27. 27.
    Levey, A. I., Wainer, B. H., Mufson, E. J., and Mesulam, M. M. 1983. Colocalization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum. Neuroscience. 9:9–22.PubMedGoogle Scholar
  28. 28.
    Ekstrom, J. 1978. Acetylcholine synthesis and its dependence on nervous activity, Experientia, 34:1247–1253.PubMedGoogle Scholar
  29. 29.
    Aldridge, W. N., 1953. The differentiation of true and pseudocholinesterase by organophosphorus compounds. Biochem. J. 53:62–67.PubMedGoogle Scholar
  30. 30.
    Koelle, G. B., Davis, R., Diliberto, E. G., and Koelle, W. A. 1974. Selective, near total irreversible inactivation of pheripheral pseudocholinesterase (BuChE) and acetylcholinesterase (AChE) in cats in vivo. Biochem. Pharmacol., 23:175–180.PubMedGoogle Scholar
  31. 31.
    López, I., and Meza, G. 1988. Neurochemical evidence for afferent GABAergic and efferent cholinergic neurotransmission in the frog vestibule. Neuroscience. 25:13–18.PubMedGoogle Scholar
  32. 32.
    Fonnum, F. 1975. Radiochemical method for determination of choline acetyltransferase and acetylcholinesterase. Pages 253–275,in Mark, N. and Rodnight, R. (eds.), Research methods in neurochemistry. Vol 18. Plenum Press, New York.Google Scholar
  33. 33.
    Fonnum, F. 1975. A rapid radiochemical method for determination of choline acetyltransferase. J. Neurochem. 24:407–409.PubMedGoogle Scholar
  34. 34.
    Ellman, G. L. Courtney, K. D., Andres, V., and Featherstone, R. M. 1960. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7:88–98.Google Scholar
  35. 35.
    Meza, G., González-Viveros, T., and Ruiz, M. 1985. Specific3H gamma aminobutyric acid binding to vestibular membranes of the chick inner ear. Brain Research 337:179–183.PubMedGoogle Scholar
  36. 36.
    Dixon, M., and Webb, E. C. 1979. Enzyme inhibition and activation. Chapter VIII. Pages 332–467,in Dixon, M., and Webb, E. C. (Eds.) Enzymes. Longman Group Limited London.Google Scholar
  37. 37.
    Lowry, H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with folin phenol reagent, J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  38. 38.
    Wächtler, K. 1981. The regional distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in vertebrate brains of different phylogenetic levels. Pages 59–72,in Pepeu, G. (ed.), Cholinergic mechanisms, Plenum Press, New York.Google Scholar
  39. 39.
    Lam, D. M. K. 1975. Synaptic chemistry of identified cells in the vertebrate retina. Cold. Spring Harbor, S. Q. Biol. 40:571–579.Google Scholar
  40. 40.
    Ryan, R., and McClure, W. 1980. Physical and kinetic properties of choline acetyltransferase from rat and bovine brain. J. Neurochem. 34:395–403.Google Scholar
  41. 41.
    Glover, V., and Potter, L. 1971. Purification and properties of choline acetyltransferase from ox brain striate nuclei. J. Neurochem. 18:571–580.PubMedGoogle Scholar
  42. 42.
    Benishin, C. G., and Carrol, P. T., 1982. A comparison of soluble and membrane bound forms of choline-o-acetyltransferase in mouse brain nerve endings. Proc. West. Pharmacol. Soc. 25:343–345.PubMedGoogle Scholar
  43. 43.
    Fonnum, F. 1966. A radiochemical methods for the estimation of choline acetyltransferase, Biochem. J. 100:479–484.PubMedGoogle Scholar
  44. 44.
    Hersh, L. B. 1980. Studies on the kinetic mechanism and salt activation of bovine brain choline acetyltransferase. J. Neurochem. 34:1077–1081.PubMedGoogle Scholar
  45. 45.
    Rossier, J., Spanditakis, Y., and Benda, P. 1977. The effect of Cl on choline acetyltransferase kinetic parameters and a proposed role for Cl in the regulation of acetylcholine synthesis. J. Neurochem. 29:1007–1012.PubMedGoogle Scholar
  46. 46.
    Meza, G. 1985. Characterization of GABA-ergic and cholinergic neurotransmission in the chick inner ear. Pages 80–101,in Drescher, D. G. (ed.), Auditory Biochemistry, Charles, C. Thomas, Spring-flied, IL.Google Scholar
  47. 47.
    Augustinsson, K. B., and Nachmansohn, D. 1949. Studies on cholinesterase VI. Kinetics of the inhibition of acetylcholine esterase. J. Biol. Chem. 179:543–549.Google Scholar
  48. 48.
    Bullock, T. H., Nachmansohn, D., and Rothenberg, M. A., 1946. Effect of inhibitors of cholinesterase on the nerve action potential. J. Neurophysiol. 9:9–22.Google Scholar
  49. 49.
    Brugani, M., Lippa, S., Littarru, G. P., Oradei, A., and Pomponi, M., 1984. A new simple method for determining the kinetic constants of inhibited acetylcholinesterase. Italian J. of Biochem. 33:325–332.Google Scholar
  50. 50.
    Davis, R., Koelle, G., and Sanville, U. J. 1984. Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the ciliary ganglion of the cat. J. Histochem. and Cytochem. 32:849–861.Google Scholar
  51. 51.
    Austin, L., and Berri, W. K. 1953. Two selective inhibitors of cholinesterase. 54:699–700.Google Scholar
  52. 52.
    Koelle, G. B., Davis, R. DiLiberto, E. J., and Koelle, W. A. 1974. Selective, near-total irreversible inactivation of peripheral pseudocholinesterase and acetylcholinesterase in cats in vivo. Biochem. Pharmacol. 23:176–188.Google Scholar
  53. 53.
    Satoh, K., Armstrong, D. M., and Fibiger, H. C. 1983. A com parison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res. Bull 11:693–720.PubMedGoogle Scholar
  54. 54.
    Cheney, D. L., Racagni, G., and Costa, E. 1976. Distribution of acetylcholine and choline acetyltransferase in specific nuclei and tract of rat brain. Appendix II: Pages 655–659,in Goldberg, A., and Hanin, I. (eds.). Biology of Cholinergic Function. Raven Press, New York.Google Scholar
  55. 55.
    Brimijoin, S., and Rakonczay, Z. 1986. Immunology and molecular biology of the cholinesterases: current results and prospects. Int. Rev. of Neurobiol. 28:363–410.Google Scholar
  56. 56.
    Fernández, H. L., and Stiles, R. J. 1984. Intra-versus extracellular recovery of 16s acetylcholinesterase following organophosphate inactivation in the rat. Neuroscience Lett. 49:117–122.Google Scholar
  57. 57.
    Goudou, D., Verdiere-Sahuque, M., and Rieger, F. 1985. External and internal acetycholinesterase in rat sympathetic neurons in vivo and in vitro. FEBS Lett. 186:54–58.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • I. López
    • 1
  • G. Meza
    • 1
  1. 1.Departmento de Neurociencias, Instituto de Fisiologia CelularUNAMMéxicoMéxico

Personalised recommendations