Advertisement

Lithuanian Mathematical Journal

, Volume 22, Issue 2, pp 145–149 | Cite as

Sums of multiplicative functions and limit theorems in probabilistic number theory. II

  • E. Manstavičius
Article
  • 24 Downloads

Keywords

Limit Theorem Number Theory Probabilistic Number Multiplicative Function Probabilistic Number Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    É. Manstavichyus, “Sums of multiplicative functions and limit theorems in probabilistic number theory. I,” Liet. Mat. Rinkinys,19, No. 2, 137–151 (1979).Google Scholar
  2. 2.
    É. Manstavichyus, “Analog of the Berry-Esseen theorem for multiplicative functions,” Liet. Mat. Rinkinys,18, No. 2, 149–150 (1978).Google Scholar
  3. 3.
    É. Manstavichyus, “Local theorem for multiplicative functions,” Liet. Mat. Rinkinys,19, No. 3, 105 (1979).Google Scholar
  4. 4.
    É. Manstavichyus, “Uniform estimates of sums of multiplicative functions,” Liet. Mat. Rinkinys,20, No. 3, 143 (1980).Google Scholar
  5. 5.
    G. Styapanauskas, “Local limit theorem for a class of arithmetic functions,” Liet. Mat. Rinkinys,20, No. 2, 159–174 (1980).Google Scholar
  6. 6.
    G. Halasz, “On the distribution of additive and the mean values of multiplicative arithmetic functions,” Stud. Math. Hung.,6, 213–233 (1971).Google Scholar
  7. 7.
    A. A. Mitalauskas and V. A. Statulyavichus, “Local limit theorems and asymptotic expansions for sums of independent lattice random variables,” Liet. Mat. Rinkinys,6, No. 4, 569–583 (1966).Google Scholar
  8. 8.
    P. D. T. A. Elliott, Probabilistic Number Theory. II. Central Limit Theorems, Springer-Verlag, New York-Heidelberg-Berlin (1980).Google Scholar
  9. 9.
    V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag (1975).Google Scholar
  10. 10.
    R. Skrabutenas, “Local limit distribution laws for a class of arithmetic functions,” Liet. Mat. Rinkinys,18, No. 1, 187–202 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • E. Manstavičius

There are no affiliations available

Personalised recommendations