Siberian Mathematical Journal

, Volume 24, Issue 5, pp 796–808 | Cite as

Linear differential operators of finite type

  • Yu. G. Reshetnyak


Differential Operator Finite Type Linear Differential Operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc. (1969).Google Scholar
  2. 2.
    J. Necas, “Sur les normes equivalentes dans Wp(k) (Ω) et sur coercitivite des formes formellement positives,” Les presses de l'Universite de Montreal, 102–128 (1966).Google Scholar
  3. 3.
    J. Necas, Les Methodes Directes en Theorie des Equationes Elliptique, Academia, Prague (1967).Google Scholar
  4. 4.
    O. V. Besov, “On coercitivity in a nonisotropic space of S. L. Sobolev,” Mat. Sb.,73, No. 4, 585–599 (1967).Google Scholar
  5. 5.
    G. G. Kazaryan, “On estimates of derivatives by means of differential operators,” Sib. Mat. Zh.,11, No. 2, 343–357 (1970).Google Scholar
  6. 6.
    Yu. G. Reshetnyak, “Some integral representations of differential functions,” Sib. Mat. Zh.,12, No. 2, 420–432 (1971).Google Scholar
  7. 7.
    A. Cartan, Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).Google Scholar
  8. 8.
    B. L. van der Warden, Algebra [in Russian], Nauka, Moscow (1976).Google Scholar
  9. 9.
    Yu. G. Reshetnyak, “Integral representations of differential functions in domains with a nonsmooth boundary,” Sib. Mat. Zh.,21, No. 6, 108–116 (1980).Google Scholar
  10. 10.
    F. John, “Rotation and strain,” Commun. Pure Appl. Math., No. 4, 391–414 (1961).Google Scholar
  11. 11.
    D. A. Trotsenko, “Properties of domains with a nonsmooth boundary,” Sib. Mat. Zh.,22, No. 4, 221–224 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Yu. G. Reshetnyak

There are no affiliations available

Personalised recommendations