Advertisement

Siberian Mathematical Journal

, Volume 24, Issue 5, pp 708–722 | Cite as

Boundary values of the mappings of the semispace, close to conformal ones

  • A. P. Kopylov
Article
  • 13 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. P. Kopylov, “On the behavior on hyperplanes of quasiconformal mappings that are close to conformal ones,” Dokl. Akad. Nauk SSSR,209, No. 6, 1278–1280 (1973).Google Scholar
  2. 2.
    A. P. Kopylov, “On the stability of classes of multidimensional holomorphic mappings. I. The concept of stability. Liouville's theorem,” Sib. Mat. Zh.,23, No. 2, 83–111 (1982).Google Scholar
  3. 3.
    A. P. Kopylov, “On the stability of classes of multidimensional holomorphic mappings. II. The stability of classes of holomorphic mappings,” Sib. Mat. Zh.,23, No. 4, 65–89 (1982).Google Scholar
  4. 4.
    A. P. Kopylov, “On the stability of classes of multidimensional holomorphic mappings,” Sib. Mat. Zh.,24, No. 3, 70–91 (1983).Google Scholar
  5. 5.
    M. A. Lavrent'ev (M. Lavrentieff), “Sur une classe de representations continues,” Mat. Sb.,42, No. 4, 407–424 (1935).Google Scholar
  6. 6.
    M. A. Lavrent'ev “Quasiconformal mappings,” in: Proc. Third All-Union Math. Congress, Vol. 3, Survey Reports, Izd. Akad. Nauk SSSR, Moscow (1958), pp. 198–208.Google Scholar
  7. 7.
    P. P. Belinskii, “On distortion in quaiconformal mappings,” Dokl. Akad. Nauk SSSR,91, No. 5, 997–998 (1953).Google Scholar
  8. 8.
    P. P. Belinskii, General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1974).Google Scholar
  9. 9.
    M. A. Lavrent'ev, “On stability in Liouville's theorem,” Dokl. Akad. Nauk SSSR,95, No. 5, 925–926 (1954).Google Scholar
  10. 10.
    P. P. Belinskii, “On the continuity of quasiconformal mappings in space and Liouville's theorem,” Dokl. Akad. Nauk SSSR,147, No. 5, 1003–1004 (1962).Google Scholar
  11. 11.
    P. P. Belinskii, “Stability in Liouville's theorem on spatial quasiconformal mappings,” Certain Problems of Mathematics and Mechanics [in Russian], Nauka, Leningrad (1970), pp. 88–102.Google Scholar
  12. 12.
    Yu. G. Reshetnyak, “Stability in Liouville's theorem on conformal mappings of a space,” in: Certain Problems of Mathematics and Mechanics [in Russian], Nauka, Novosibirsk (1961), pp.219–223.Google Scholar
  13. 13.
    Yu. G. Reshetnyak, “Stability in Liouville's theorem on conformal mappings of a space for domains with a nonsmooth boundary,” Sib. Mat. Zh.,17, No. 2, 361–369 (1976).Google Scholar
  14. 14.
    H. Whitney, Geometric Integration Theory, Princeton Univ. Press (1957).Google Scholar
  15. 15.
    A. P. Kopylov, “On the approximation of spatial quasiconformal mappings that are close to conformal ones by smooth quasiconformal mappings,” Sib. Mat. Zh.,13, No. 1, 94–106 (1972).Google Scholar
  16. 16.
    A. Mori, “On quasiconformality and pseudoanalyticity,” Trans. Am. Math. Soc.,84, No. 1, 56–77 (1957).Google Scholar
  17. 17.
    F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Am. Math. Soc.,103, No. 3, 353–393 (1962).Google Scholar
  18. 18.
    P. P. Belinskii, “On the order of proximity of a three-dimensional quasiconformal mapping to a conformal mapping,” Sib. Mat. Zh.,14, No. 3, 475–483 (1973).Google Scholar
  19. 19.
    Yu. G. Reshetnyak, “Stability estimates in Liouville's theorem, and the Lp-integrability of the derivatives of quasiconformal mappings,” Sib. Mat. Zh.,17, No. 4, 868–896 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. P. Kopylov

There are no affiliations available

Personalised recommendations