Advertisement

Siberian Mathematical Journal

, Volume 24, Issue 4, pp 576–586 | Cite as

Some calculations in the theory of multidimensional linkages

  • V. M. Nezhinskii
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Haefliger, “Differentiable embeddings of Sn in Sn+q for q>2,” Ann. Math.,83, 402–436 (1966).Google Scholar
  2. 2.
    A. Haefliger, “Enlacements de spheres en codimension superieure a 2,” Comment. Math. Helv.,41, 51–72 (1966).Google Scholar
  3. 3.
    M. Kervaire, “An interpretation of G. Whitehead's generalization of Hopf's invariant,” Ann. Math.,69, 345–365 (1959).Google Scholar
  4. 4.
    E. C. Zeeman, “Linking spheres,” Abh. Math. Sem. Univ. Hamburg,24, 149–153 (1960).Google Scholar
  5. 5.
    A. Haefliger, “Differentiable links,” Topology,1, 241–245 (1962).Google Scholar
  6. 6.
    A. Haefliger and B. Steer, “Symmetry of linking coefficients,” Comment. Math. Helv.,39, No. 4, 259–270 (1965).Google Scholar
  7. 7.
    C. T. C. Wall, “On certain 6-manifolds,” Invent. Math.,1, No. 4, 355–374 (1966).Google Scholar
  8. 8.
    J. M. Boardman and B. Steer, “On Hopf invariants,” Comment. Math. Helv.,42, No. 3, 180–221 (1967).Google Scholar
  9. 9.
    V. G. Turaev, “Invariants of linkages of codimension greater than two,”, in: Texts of Lectures and Reports to the VII All-Union Topology Conference, Minsk (1977), p. 182.Google Scholar
  10. 10.
    V. M. Nezhinskii, “A generalization of the Zeeman-Haefliger theorem on linkages,” Usp. Mat. Nauk,35, No. 5, 235–236 (1980).Google Scholar
  11. 11.
    V. M. Nezhinskii, “Calculation of certain groups in the theory of linkages,” in: Research in Topology, II, Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. Akad. Nauk SSSR,66, 177–179 (1976).Google Scholar
  12. 12.
    J.-P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, New York-Amsterdam (1965).Google Scholar
  13. 13.
    V. K. A. M. Gugenheim, “Semisimplicial homotopy theory,” in: Studies in Modern Topology, Studies in Math.,5, 99–133 (1968).Google Scholar
  14. 14.
    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Interscience, New York-London-Sydney (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. M. Nezhinskii

There are no affiliations available

Personalised recommendations