Siberian Mathematical Journal

, Volume 27, Issue 1, pp 80–88 | Cite as

Cyclic monads and their application

  • S. S. Kutateladze


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Robinson, Nonstandard Analysis, North-Holland, Amsterdam-London (1970).Google Scholar
  2. 2.
    W. A. Luxemburg, “A general theory of monads,” in: Applications of Model Theory to Algebra, Analysis and Probability, Holt, Rinehart, and Winston, New York (1966), pp. 18–86.Google Scholar
  3. 3.
    S. S. Kutateladze, “Descents and ascents,” Dokl. Akad. Nauk SSSR,272, No. 3, 521–524 (1983).Google Scholar
  4. 4.
    A. G. Kusraev and S. S. Kutateladze, “Subdifferentials in Boolean-valued models of set theories,” Sib. Mat. Zh.,24, No. 5, 109–122 (1983).Google Scholar
  5. 5.
    A. G. Kusraev, Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  6. 6.
    A. G. Kusraev and S. S. Kutateladze, Notes on Boolean-Values Analysis [in Russian], Novosibirsk State Univ. (1984).Google Scholar
  7. 7.
    G. Takeuti, Two Applications of Logic to Mathematics, Iwanami Shoten and Princeton Univ. Press, Tokyo (1978).Google Scholar
  8. 8.
    G. Takeuti, “C*-algebras and Boolean-valued analysis,” Jpn. J. Math.,9, No. 2, 207–248 (1983).Google Scholar
  9. 9.
    E. Nelson, “Internal set theory. A new approach to nonstandard analysis,” Bull. Am. Math. Soc.,83, No. 6, 1165–1198 (1977).Google Scholar
  10. 10.
    M. Davis, Applied Nonstandard Analysis [Russian translation], Mir, Moscow (1980).Google Scholar
  11. 11.
    A. K. Zvonkin and M. A. Shubin, “Nonstandard analysis and singular perturbations of ordinary differential equations,” Usp. Mat. Nauk,39, No. 2, 77–127 (1984).Google Scholar
  12. 12.
    S. S. Kutateladze, Foundations of Functional Analysis [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  13. 13.
    G. P. Akilov and S. S. Kutateladze, Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).Google Scholar
  14. 14.
    A. G. Kusraev, “Boolean-valued analysis of the duality of extended modules,” Dokl. Akad. Nauk SSSR,267, No. 5, 1049–1052 (1982).Google Scholar
  15. 15.
    E. I. Gordon, “Real numbers in Boolean-valued models of set theory and K-spaces,” Dokl. Akad. Nauk SSSR,237, No. 4, 773–775 (1977).Google Scholar
  16. 16.
    E. I. Gordon, “Theorems on preserving relations in K-spaces,” Sib. Mat. Zh.,23, No. 3, 55–65 (1982).Google Scholar
  17. 17.
    A. G. Kusraev, “Some applications of the theory of Boolean-valued models in functional analysis” (Preprint Akad. Nauk SSSR, Sib. Otd., IM: 5), Novosibirsk (1982).Google Scholar
  18. 18.
    S. S. Kutateladze, “Infinitesimal tangent cones,” Sib. Mat. Zh.,26, No. 6, (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • S. S. Kutateladze

There are no affiliations available

Personalised recommendations