Skip to main content

Advertisement

Log in

Brain asymmetry in phospholipid polar head group metabolism: Parallel in vivo and in vitro studies

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Phospholipid content and32P-incorporation have been studied in individual rat cerebral hemispheres. The total phospholipid content was 44.9±0.9 and 47.9±1.3 μmol lipid P/100 mg protein for the right and left hemispheres respectively. Individually, only sphingomyelin was significantly (about 30%) higher in the left hemisphere. Metabolic experiments have been conducted in vivo using i.p. injection of32P and following its incorporation into total and individual phospholipids in each cerebral hemisphere. Higher incorporations were attained by phosphatidate and phosphatidylinositol-4,5-bisphosphate (PIP2) in the left cerebral hemisphere than in the right. In an attempt to determine whether phospholipid metabolism is also lateralized in specific subcellular compartments related with the neurotransmission process, we have studied in vitro the [32P] incorporation into phosphoglycerides of synaptosomal fractions obtained from each cerebral cortex. The precursor was taken up differently by the two cerebral cortex preparations, resulting in different profiles of distribution among lipids. In addition, the kinetics of lipid labeling showed higher rates of32P-incorporation in fractions derived from the left cerebral cortex, mainly in PIP and PIP2, These results are interpreted to indicate that several enzymes involved in lipid metabolism are modulated to a different extent in the two hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glick, S. D., Ross, D. A., and Hough, L. B. 1982. Lateral asymmetry of neurotransmitters in human brain. Brain Res. 234:53–63.

    Google Scholar 

  2. Amaducci, L., Sorbi, S., Albanese, A., and Gainoti, G., 1981. Choline acetyltransferase (ChAT) activity differs in right and left human temporal lobes. Neurology 31:799–805.

    Google Scholar 

  3. Schwartzman, R. J., Eidelberg, E., and Alexander, G. M. 1986. Asymmetrical regional changes in energy metabolism of the CNS during walking. Brain Res. 398:113–120.

    Google Scholar 

  4. Pediconi, M. F., and Rodriguez de Turco, E. B. 1984. Free fatty acid content and release kinetics as manifestations of cerebral lateralization in mouse brain. J. Neurochem. 43:1–7.

    Google Scholar 

  5. Ginobili de Martinez, M. S., Rodriguez de Turco, E. B., and Barrantes, F. J. 1985. Endogenous asymmetry of rat brain lipids and dominance of the right cerebral hemisphere in free fatty acid response to electroconvulsive shock. Brain Res. 339:315–322.

    Google Scholar 

  6. Ginobili de Martinez, M. S., Rodriguez de Turco, E. B., and Barrantes, F. J. 1986. Asymmetry of diacylglycerol metabolism in rat hemispheres. J. Neurochem. 46:1382–1386.

    Google Scholar 

  7. Berridge, M. J. 1984. Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220:345–360.

    Google Scholar 

  8. Van Rooijen, L. A. A., Seguin, E. B., and Agranoff, B. W. 1983. Polyphosphodiesteratic breakdown of endogenous polyphosphoinosites in nerve ending membranes. Biochem. Biophys. Res. Commun. 112:919–926.

    Google Scholar 

  9. Folch, J., Lees, M., and Sloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    Google Scholar 

  10. Uma, S., and Ramackrishnan, C. V. 1983. Studies on polyphosphoinositides in developing rat brain. J. Neurochem. 40:914–916.

    Google Scholar 

  11. Hauser, G., and Eichberg, J. 1973. Improved conditions for the preservation and extraction of polyphosphoinositides. Biochem. Biophys. Acta 326:201–209.

    Google Scholar 

  12. Rouser, G., Fleisher, S., and Yamamoto, A. 1970. Two-dimensional thin-layer chromatographic separation of polar lipids. Lipids 5:494–496.

    Google Scholar 

  13. Shaik, N. A., and Palmer, F. B. St. C. 1977. Phosphoinositide kinases in chick brain and sciatic nerve, a developmental study. J. Neurochem. 28:395–402.

    Google Scholar 

  14. Schmidt, G., and Tannhauser, S. J. 1945. A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissue. J. Biol. Chem. 161:83–89.

    Google Scholar 

  15. Giufrida, A. M., Gadaleta, M. N., Serra, I., Renis, M., Geremia, E., Del Prete, G., and Saccone, C. 1979. Mitochondrial DNA, RNA, and protein synthesis in different regions of developing rat brain. Neurochem. Res. 4:37–52.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. S. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  17. Hauser, G., Eichberg, J., and Gonzalez-Sastre, F. 1971. Regional distribution of polyphosphoinositides in rat brain. Biochim. Biophys. Acta. 248:87–95.

    Google Scholar 

  18. Keough, K. M. W., MacDonald, G., and Thompson, W. 1972. A possible relation between phosphoinositides and the diglyceride pool in rat brain. Biochim. Biophys. Acta. 270:337–347.

    Google Scholar 

  19. Keough, K. M. W., and Thompson, W. 1970. Triphosphoinositide phosphodiesterase in developing brain of the rat and in subcellular fractions of the brain. J. Neurochem. 17:1–11.

    Google Scholar 

  20. Keough, K. M. W., and Thompson, W. 1972. Soluble and particulate forms of phosphoinositides phosphodiesterase in ox brain. Biochim. Biophys. Acta 270:324–336.

    Google Scholar 

  21. Sherman, W. R., Leavit, A. L., Honchar, M. P., Hallacher, L. M., and Phillips, B. E. 1981. Evicence that lithium alters phosphoinositides metabolism: Chronic administration elevates primarilyd-myo- inositol-1-phosphate in cerebral cortex of the rat. J. Neurochem. 36:1947–1951.

    Google Scholar 

  22. Ikeda, M., Yoshida, S., Busto, R., Santiso, M., and Ginsberg, M. D. 1986. Polyphosphoinositides as probable source of brain free fatty acids accumulated at the onset of ischemia. J. Neurochem. 47:123–132.

    Google Scholar 

  23. Yoshida, S., Ikeda, M., Busto, R., Santiso, M., Martinez, E., and Ginsberg, M. D. 1986. Cerebral phosphoinositide, triascylglycerol, and energy metabolism in reversible ischemia: origin and fate of free fatty acids. J. Neurochem. 47:744–757.

    Google Scholar 

  24. Sun, G. Y., Huang, H-M., Chandrasekhar, R., Lee, D. Z., and Sun, A. Y. 1987. Effects of chronic ethanol administration on rat brain phospholipid metabolism. J. Neurochem. 48:974–980.

    Google Scholar 

  25. Friedel, R. O., and Shamberg, S. M. 1971. Incorporation in vivo of intracisternally injected [32P] into phospholipids of rat brain. J. Neurochem. 18:2191–2200.

    Google Scholar 

  26. Van Rooijen, L. A. A., Vadnal, R., Dobard, P., and Bazan, N. G. 1986. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus. Biochem. Biophys. Res. Commun. 136:827–834.

    Google Scholar 

  27. Hayward, J. N., and Baker, M. A. 1969. A comparative study of the role of cerebral arterial blood flow in the regulation of brain temperature in five mammals. Brain Res. 16:417–440.

    Google Scholar 

  28. Ingvard, D. H., and Risberg, J. 1967. Increase of regional cerebral blood flow during mental efforts in normals and in patients with focal brain dissorders. Exp. Brain Res. 3:195–211.

    Google Scholar 

  29. Risberg, J., and Ingvard, D. H. 1968. Regional changes in cerebral blood volume during mental activity. Exp. Brain Res. 5:72–78.

    Google Scholar 

  30. Risberg, J., and Ingvard, D. H. 1971. Increase of blood flow in cortical association areas during memorization and abstract thinking. Eur. Neurol. 6:236–241.

    Google Scholar 

  31. Lapetina, E. G., and Hawthorne, J. N. 1971. The diglyceride kinase of rat cerebral cortex. Biochem. J. 122:171–179.

    Google Scholar 

  32. Kanoh, H., Kondoh, H., and Ono, T. 1983. Diacylglycerol kinase from pig brain. J. Biol. Chem. 258:1767–1774.

    Google Scholar 

  33. Lin, C. H., Bishop, H., and Strickland, K. P. 1986. Properties of diacylglycerol kinase purified from bovine brain. Lipids 21:206–211.

    Google Scholar 

  34. Harwood, J. L., and Hawthorne, J. N. 1969a. Metabolism of the polyphosphoinositides in guinea-pig brain synaptosomes. J. Neurochem. 16:1377–1378.

    Google Scholar 

  35. Harwood, J. L., and Hawthorne, J. N. 1969b. The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues. Biochim. Biophys. Acta 171:75–88.

    Google Scholar 

  36. Jolles, J., Zwiers, H., Van Dongen, C., Schotman, P., Wirtz, K. W. A., and Gispen, W. H. 1980. Modulation of brain polyphosphoinositides metabolism by ACTH-sensitive protein phosphorylation. Nature 286:623–625.

    Google Scholar 

  37. Kai, M., Salway, J. G., and Hawthorne, J. N. 1969. The diphosphoinositide kinase of rat brain. Biochem. J. 106:791–801.

    Google Scholar 

  38. Ginobili de Martinez, M. S., and Barrantes, F. J. 1988. Ca++ and phospholipid-dependent protein kinase activity in rat cerebral hemispheres. Brain Res. 440:386–390.

    Google Scholar 

  39. Aloyo, V. J., Zwiers, H., and Gispen, W. H. 1983. Phosphorylation of B-50 protein by calcium-activated phospholipid-dependent protein kinase and B-50 protein kinase. J. Neurochem. 41:649–653.

    Google Scholar 

  40. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. 1982. Direct activation of calcium-activated phospholipid dependent protein kinase by tumor promoting phorbol esters. J. Biol. Chem. 257:7847–7851.

    Google Scholar 

  41. Streb, H., Irvine, R. F., Berridge, M. J., and Shultz, J. 1983. Release of Ca2+ from non-mitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-triphosphate. Nature 306:67–69.

    Google Scholar 

  42. Geshwind, M., and Galaburda, A. M. 1985. Cerebral lateralization. Biological mechanisms, associations and pathology: I. A hypothesis and program for research. Arch. Neurol. 42:428–459.

    Google Scholar 

  43. Mandell, A. J., and Knapp, S. 1979. Asymmetry and mood, emerging properties of serotonin regulation. Arch. Gen. Psychiatr. 36:909–916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pediconi, M.F., Barrantes, F.J. Brain asymmetry in phospholipid polar head group metabolism: Parallel in vivo and in vitro studies. Neurochem Res 15, 25–32 (1990). https://doi.org/10.1007/BF00969180

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969180

Key Words

Navigation